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Abstract.

A degree elevation formula for multivariate simplex splines was given by Micchelli
[6] and extended to hold for multivariate Dirichlet splines in [8]. We report similar
formulae for multivariate cone splines and box splines. To this end, we utilize a relation
due to Dahmen and Micchelli [4] that connects box splines and cone splines and a degree
reduction formula given by Cohen, Lyche, and Riesenfeld in [2].
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1 Introduction

In 1979, C.A. Micchelli reported a formula whereby a multivariate simplex
spline of total degree n could be expressed as a linear combination of simplex
splines of total degree n + 1. The knot set of the kth degree n + 1 spline was
formed by adding one more copy of the kth knot to the original knot set. Thus
the expansion given in [6] contained many different knot sets.

In [8] the authors generalized the degree elevation formula given by Micchelli
to hold for multivariate Dirichlet splines. This class of splines holds as a special
case the polynomial simplex splines in addition to rational splines. The formula
given in [8] also utilizes the same knot sets as those of [6].

Cohen, Lyche, and Schumaker [3] formulated and solved a degree elevation
problem for univariate splines in 1986. Their work illustrated how an arbitrary
degree n piecewise polynomial could be constructed from degree n + 1 splines.
In order to preserve regularity at the knot points, they utilized the same knot
set for each spline in their expansion.

Recently, we have found some results similar to Micchelli’s for box splines and
cone splines. It is hoped that the formulae given here may be of some use in
formulating and solving a multivariate analog of the problem studied in [3].

The remainder of the paper is follows. Section 2 contains notation, definitions,
and basic results necessary to the sequel while the degree elevation formulae for
box splines and cone splines are given in Section 3.
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2 Notation, Definitions, and Basic Results

Throughout this paper, we will assume that n > s > 1 are integers and
make use of the sets

R;y = {zeR|z>0}
Z, = {n€Zn>0}
I = [0,1]
and
n—1
snl = {(tl,...,tnfl) S ]Rn71| Ztk <Lt >0,k= 1,...,”}.
k=1
Often,
n—1
(2.1) th=1- t,
k=1

and for r € R, ry = max{0,7}. For X = {z!,...,2"} C IR’, other sets of
importance are <X >, the linear span of the vectors in X, and [X], the convex
hull of the vectors in X. Finally, where

¥ e Xt e R,
and for j =1,...,n,

X; = X\{z'},
(2.2) X! = Xu{z}.

We now define the multivariate splines used throughout the sequel. Let
f € Co(IR?) — the space of continuous functions on IR’ with compact support.
Assume that X is defined as above with the added restrictions that 0 ¢ X and
<X >=R°’. We define the boz spline, B(x|X), by requiring the distributional
relation

(2.3) f(z)B(z|X)dz = f(Xt)dt
ms In

holds. If, in addition 0 ¢ [X], we define the cone spline, C(z|X), by requiring
the relation

(2.4) f(2)C(z|X)dx = F(Xt)dt
R* R?

hold. Here dx = dxq - - -dz, and dt = dt; - - - dt,.

Now assume X = {z!,..., 2"} C IR® is such that vol;[X] > 0. Then we define
the simplex spline, S(z|X) by requiring

F@)S(2|X)dz = (n — 1)!/ F(Xt)dt
]R/s Sn—l
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holds, where now dt = dt; - - - dt,, and t,, is as defined by (2.1).
It should also be noted that the total degree of each spline above depends on

the number of vectors in X. Indeed, for X = {z!,..., 2"},
deg(B(-|X)) = n-—s,
deg(C(-|X)) = n-—s,
deg(S(-|X)) = n—1-s.

It is also well-known (see [1] for example) that the box spline is compactly
supported with

(2.5) pt(BOIX)) = (> tua® 15 € 0,1,k = 1,...,n)
k=1

In addition, observe that for k = 1,...,n, spt(B(-|X)) C spt(B(-|X*)).

We conclude Section 2 with two results that illustrate certain relationships
between different types of splines. The first result utilizes the following definition:

Let y € IR®. Then the backwards difference operator, 7,(+) is given by:
Vyf() =)= f(- =)
Also, for X = {z!,..., 2"}, we define the operator

VXx =Vt Var -

The first result shows that a box spline can be obtained by applying 7 x to
a cone spline with the same knots. The theorem was formulated and proved by
W. Dahmen and C.A. Micchelli in [4], and an alternate proof was given by E.
Neuman in [7].

THEOREM 2.1 ([4]). Assume X = {z!,...,2"} C R® with 0 ¢ [X] and
<X >=1R’?. Then
(2.6) B(z|X) = vxC(z]X)

The final result of Section 2 is due to E. Cohen, T. Lyche, and R. Reisenfeld
[2] and is an extension of a result due to Dahmen and Micchelli [5]. The result
illustrates how an s-variate cone spline can be evaluated using (s — 1)-variate
simplex splines. The ability to “drop” a dimension is an important tool for the
derivation of the degree elevation formulas that are given in Section 3. To state
the result of [2], we need to introduce more notation. To this end, we follow [2]
and define for any nonsingular matrix V € IR**?, a linear functional

(2.7 n(z) =TV 'z,
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a function

x otherwise,

'z if m(x 0
_{ @) ) #

and a projection
P(z) = P(zy,...,2,) = (2a,...,25) 7.

Here, 7 = (1,...,1)T € R®.

THEOREM 2.2 ([2]). Let X = {z',...,2"} CR’, n > s > 2, with 0 ¢ [X],
< X >= R®. Then for any nonsingular matriz V. € R**® with w(z*) > 0,
k=1,...,n, we have for x € R?, w(z) # 0,

n -1

(2.8) C(z|X) = | (n— 1) det(V)] H ()| 7(@)" S (PA(z)|PA(X)),

where PA(X) = {PA(z!),..., PA(z™)}.

3 Degree Elevation Formulas

In his paper [6], Micchelli gives the following degree elevation formula for
multivariate simplex splines:
THEOREM 3.1 ([6]). Let X = {z',...,z"} C R®, and vols[X] > 0. Then

n

Z (x| X*).

(3.1) S(z|X) =

SI'—‘

A generalization of the above result appears in [8]. While the knot set remains
constant for the degree elevation formula in [3], the sets utilized in the sequel
are the same as those used in Theorem 3.1.

The results that follow deal with degree elevation for cone splines and box
splines.
THEOREM 3.2. Under the assumptions of Theorem 2.2 along with w(x) > 0,

n
(3.2) Cz|X) = ZT( C(z|X*).
k=1

ProoF. Since 7(z) > 0, we can insert (3.1) into (2.8) and arrive at

n

(3.3)  C(z|X) =) [n!|det(V)| [] #(@?)] 7" #"~*(2) S(PA(z)|[PA(X*)).
k=1 j=1
Now multiply and divide each term in the sum of (3.3) by 7(z*) to obtain:

n n

Clz|X) = Y w(a®)n!] des(V)|r(z®) [] m(@?)] 7 7"~ (2) S(PA(z) | PACX*))

k=1 j=1
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To complete the proof, multiply both sides of the above equation by 7 (z) and
then use (2.8):

m(@¥)[nl| det(V) |m () [ ] w(@?)] o+ 2 (2) S (PA(z) [ PAX"))

M=

m(z)C(z|X) =
k=1 j=1
= Z 7(z?)C (x| XF).
k=1
d

EXAMPLE 3.1. Let s =2 and X = {(1,0)%,(0,1)T, (1,1)T}. Figure 8.1 illus-
trates the cone spline C(x|X) while Figure 3.2 shows the cone splines C(z|X¥),
k=1,2,3, used in (3.2).

=
—————
e

=

Figure 3.1 The cone spline C(z|X).
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Figure 3.2 The cone splines C(z|X?!) and C(z|X?).
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Figure 3.2 (continued) The cone spline C'(z|X?).

In order to prove our result for box splines, we need the following simple
lemma.
LEMMA 3.3. Let f,g: R® = IR with g linear. Let X = {z',... 2"} C R’.



Some Recurrence Formulas for Box Splines and Cone Splines 7

Then "
(3.4) Vx(f(@)g(@) = g(z) vx (f(z) + > 9(z*) Vx, flz —z*).

k=1

PRrOOF. The proof follows by induction on n. 0O

Before stating and proving our final result, let us further analyze the operator
Vy- Suppose f is continuous and compactly supported with spt(f) = S. Let
M € NN be such that f(x —£¢y) =0 for any x € S and £ > M. Next consider the
convolution product

M M
3 b= jy) + vy f@) = 8z — jy) * (f(@) - f(z — ),
Jj=0 7=0

where § is the Dirac delta distribution. The fact that f is smooth and compactly
supported allows us to formally write

M M
S o —jy) vuf@) = 36—y * (f2) - fl@ —y))

i=0 =0
M
= Zf(x—jy) — fl@— (G +1)y)

- _<) Flo - (M + 1)y)
(3.5 - e

We shall make use of (3.5) in the proof of our next theorem.
THEOREM 3.4. Under the assumptions of Theorem 2.2 along with w(x) > 0,

(3.6) B(z|X) = Zw )(vxC(z|X*) — vx,C(z — z*| X)).

Moreover we have

(37)  w(@)B(z|X) =) w(a*)) (B(z - ja*|X*) + B(z — jz*| X)),
k=1 §=0

For every x € spt(B(-|X)) where B(z|X) is continuous. Here, M}, € IN, k =
1,...,n are such that B(z—£x*|X*) = 0 whenever x € spt(B(-|X), and £ > Mj,.
ProoFr. We first apply 7x to both sides of (3.2) to obtain

n

(3.8) Vx(r(@)C(z|X)) = Y w(a*) vx Clz|X*).
k=1
Applying Lemma 3.3 to the left hand side of (3.8) gives

n n

m(z) vx O(2|X) + ) m(a*) vx, Clz —2*|X) =Y w(z*) vx Oa]X).

k=1 k=1
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Upon application of Theorem 2.1 (3.6) follows.

In order to establish (3.7), we first apply the operator 7x to both sides of
(3.6) and next appeal to (2.1). We have

(3.9) Vx(n(z)B(x|X)) =Y w(z*)(B(z|X*) — B(z — 2*|X)).
k=1
Now define
M;,
Tpie(z) =Y 6(z — ja*)
7=0

where M} is as described in the theorem. We define the n-fold convolution
product
Tx =Tyn x---xTpa

and convolve T'x (z) with both sides of (3.9) to obtain

n

(3.10Tx () * (n(2)B(z|X)) = Y n(a")Tx (z) * (B(2|X*) - B(x — 2"|X)).

k=1

Equation (3.5) then gives
m(z)B(z|X) = Zw(mk)Txk x (B(z|X*) — B(z — 2*|X))

7(z¥)6(z — ja*) * (B(z|X*) — B(z — zF|X))

(2*) Y (B(z — jz*|X*) - B(z — (j + 1)z*| X))

from which the result follows. 0O

We conclude the paper with an example of the elevation formula for box
splines.

EXAMPLE 3.1. Let s =2 and X = {(1,0)%,(0,1)T,(1,1)T}. Figure 3.3 shows
the bivariate boz spline B(x|X) while Figure 3.4 shows the box splines B(z|X*),
k =1,2,3 who along with their translates and the translates of B(z|X) are used
in (3.7) to obtain B(z|X).
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o

Figure 3.3 The box spline B(z|X).
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Figure 3.4 The box splines B(x|X!) and B(z|X?2).
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Figure 3.4 (continued) The box spline B(z|X?3).

Acknowledgement.

The author wishes to thank Professor Jianzhong Wang for his useful sugges-
tions in proving Theorem 3.4.

REFERENCES

1. C. deBoor, K. Hollig, and S. Riemenschneider, Boz Splines, Applied Mathematical
Sciences 98, Springer-Verlag, New York, 1993, p. 11.

2. E. Cohen, T. Lyche, and R. Reisenfeld, Cones and recurrence relations for simplex
splines, Constr. Approx., 3(1987), pp. 131-142.

3. E. Cohen, T. Lyche, and L. Schumaker, Degree-raising for splines, J. Approx. The-
ory, 46(1986), pp. 170-181.

4. W. Dahmen and C.A. Micchelli, Recent progress in multivariate splines, in Approx-
imation Theory IV, C.K. Chui, L.L. Schumaker, and J.D. Ward, eds., Academic
Press, New York, 1983, pp. 27-121.

5. W. Dahmen, and C.A. Micchelli, On the linear independence of multivariate B-
splines. II: complete configurations, Math. Comp. 41(1983), pp. 143-163.

6. C.A. Micchelli, On a numerically efficient method for computing multivariate B-
splines, in: Multivariate Approximation Theory, ed. by W. Schempp and K. Zeller,
Basel, Birkhauser, 1979, pp. 211-248.

7. E. Neuman, Computation of inner products of some multivariate splines, in: Splines
in Numerical Analysis, J.W. Schmidt and M. Spath, eds., Akademie-Verlag, Berlin,
1989, pp. 97-109.

8. E. Neuman and P.J. Van Fleet, Moments of Dirichlet splines and their applications
to hypergeometric functions, J. Comp. App. Math., 53(1994), pp. 225-241.



