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Abstract

This paper considers Gibbs’ phenomenon for scaling vectors in L2(R). We first show
that a wide class of multiresolution analyses suffer from Gibbs’ phenomenon.

To deal with this problem, in [11], Walter and Shen use an Abel summation tech-
nique to construct a positive scaling function Pr, 0 < r < 1, from an orthonormal
scaling function φ that generates V0. A reproducing kernel can in turn be constructed
using Pr. This kernel is also positive, has unit integral, and approximations util-
itizing it display no Gibbs’ phenomenon. These results were extended to scaling
vectors and multiwavelets in [9]. In both cases, orthogonality and compact support
were lost in the construction process.

In this paper we modify the approach given in [9] to construct compactly sup-
ported positive scaling vectors. While the mapping into V0 associated with this new
positive scaling vector is not a projection, the scaling vector does produce a Riesz
basis for V0 and we conclude the paper by illustrating that expansions of functions
via positive scaling vectors exhibit no Gibbs’ phenomenon.

Key words: scaling functions, scaling vectors, Gibbs’ phenomenon, summability
techniques, compactly supported scaling vectors

1 Introduction

We consider the question of Gibbs’ phenomenon for scaling vector expan-
sions. Generalizing a result of Shim and Volkmer [10], we show that if Φ is
orthogonal or Φ has a biorthogonal dual that is compactly supported, then
the corresponding wavelet expansion exhibits Gibbs’ phenomenon on at least
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one side of 0. The question of how to avoid Gibbs’ for wavelet expansions is
thus important, and was first studied by Walter and Shen [11].

Let φ be a compactly supported orthogonal scaling function generating a mul-
tiresolution analysis {Vk} for L2(R). In [11], the authors show how to use this φ
to construct a new scaling function P that generates the same multiresolution
analysis for L2(R). Moreover, P (t) ≥ 0 for t ∈ R. The application the authors
considered for this new function P was density estimation. They also showed
that approximations fm ∈ Vm to f ∈ L2(R) where fm(t) =

∫
s∈RKm(s, t)f(s)ds

and Km(s, t) = 2m ∑
n∈Z φ(2ms−n)φ(2mt−n) exhibits no Gibbs’ phenomenon.

While Km is not a projection of f into Vm, fm may well be useful in some
applications where Gibbs’ phenomenon is a problem. The disadvantages of
this construction are that P is not compactly supported and orthogonality is
lost (although the authors gave a simple expression for the dual P ∗).

The results of Walter and Shen [11] were generalized to the scaling vectors Φ =
(φ1, . . . , φA)T in [9]. Here the authors also showed that it was not necessary
to start with an orthogonal scaling vector supported on some interval [0,M ]
to construct the nonnegative scaling vector P .

While the orthogonality of a scaling vector is desirable in some cases, it is
impossible to insist that the scaling vector be both orthogonal and nonnega-
tive. As we will see, is it often possible to modify the construction and retain
the compact support. We will take a bounded, compactly supported scaling
vector Φ and illustrate how to construct a nonnegative compactly supported
scaling vector Φ̃ that generates the same multiresolution analysis as Φ. The
construction requires that at least one component φj of Φ is nonnegative on
its support plus some conditions on the coefficients in the partition of unity
generated by Φ. We then prove that Gibbs’ is avoided by the new scaling
vector, and the results are applied to two well-known scaling vectors from the
literature.

2 Notation, Definitions, and Preliminary Results

In this section we will state definitions, introduce notation, and present results
used throughout the sequel.

We begin with the concept of a scaling vector or a set of multiscaling functions.
This idea was first introduced in [3,5]. We start with A functions, φ1, . . . , φA

and consider the space V0 = < {φ1(· − k), . . . , φA(· − k)}k∈Z >.

It is convenient to store φ1, . . . , φA in a vector Φ(t) =
(

φ1(t) φ2(t) . . . φA(t)

)T

and define a multiresolution analysis in much the same manner as in [1]:
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• (M1) ∪n∈ZVn = L2(R).
• (M2) ∩n∈ZVn = {0}.
• (M3)f ∈ Vn ↔ f(2−n·) ∈ V0, n ∈Z.

• (M4) f ∈ V0 → f(· − n) ∈ V0, n ∈Z.

• (M5) Φ generates a Riesz basis for V0.

In this case Φ satisfies a matrix refinement equation:

Φ (x) =
N∑

k=0

CkΦ (2x− k) (1)

where the Ck are A×A matrices. We define the Fourier transform Φ̂ of Φ by
the component-wise rule: φ̂`(ω) =

∫
R φ`(t)e−iωtdt, ` = 1, . . . , A and the A×A

matrix

EΦ (ω) =
∑

k∈Z
Φ̂(ω + 2πk)Φ̂†(ω + 2πk) (2)

where † denotes the Hermitian conjugate. The matrix EΦ plays an important
role in analyzing scaling vectors. Indeed Geronimo, Hardin, and Massopust
introduced this matrix in [3] and showed that the nonsingularity of EΦ is
necessary and sufficient for the set in (M5) to form a Riesz basis for V0.

We introduce standard terminology: Φ is continuous (bounded) if each compo-
nent function φ` is continuous (bounded). Similarly, Φ has compact support if
each component function φ` is compactly supported. In this case, we assume
that supp(φ`) = [0,M`] and denote by M the maximum value of M`:

M = max{M1, . . . , MA} (3)

We will say that Φ has polynomial accuracy p if tk ∈ V0 for k = 0, 1, . . . , p− 1.
In particular, for the case p = 1 (partition of unity), this is equivalent to the
existence of a vector ~c = (c1, . . . , cA)T for which

A∑

`=1

∑

k∈Z
c`φ

`(t− k) = 1. (4)

It was shown by Theorem 3.1 in [9] that if Φ is a continuous, compactly
supported scaling vector with accuracy p ≥ 1 satisfying (M1)-(M5), a new
scaling vector Φ̃ could be constructed that generates the same multiresolution
analysis as Φ and also satisfies:

• ∑
k∈Z φ`(t− k) > 0 for each ` ∈Z such that c` 6= 0, and

• c`

∫
R φ` ≥ 0 for each ` = 1, . . . , A and if

∫
R φ` = 0, then c` = 0.
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This new scaling vector Φ̃ could then be used to construct a kernel allowing
one to avoid Gibbs’ (Proposition 3.7 in [9]). However, compact support was
lost in the construction of this new scaling vector Φ̃. In Section 4, we will show
how to construct a new scaling vector Φ̃ preserving the compact support, and
which is used to construct a kernel allowing one to avoid Gibbs’.

3 Gibbs’ Phenomenon for Nonnegative Scaling Vectors

In this section, we prove a theorem demonstrating that Gibbs’ phenomenon
is indeed a problem for a wide class of multiresolution analyses such as those
found in [4], [3] and others. To clarify the discussion, we classify multiresolution
analyses into three categories:

(MRA1) Those with orthonormal bases. In this case we can write

L2(R) = Vk ⊕ (⊕`≥kW`)

where the direct sums are orthogonal, and the corresponding orthogonal
projections Pk are defined by

Pk




A∑

i=1

∑

j∈Z
αi

kjφ
i
kj +

∑

`≥k

A∑

i=1

∑

j∈Z
βi

`jψ
i
`j


 =

∑

ij

αi
kjφ

i
kj (5)

where φi
kj(t) = 2−k/2φi(2kt− j) for i = 1, . . . , A, k, j ∈ Z.

(MRA2) Those with semi-orthogonal bases. In this case the translates
of the scaling function(s) are not orthogonal, but we can still write

L2(R) = Vk ⊕ (⊕`≥kW`)

where the direct sums are orthogonal, and the corresponding Pk are defined
as in (5).

(MRA3) Those with non-orthogonal biorthogonal bases. In this case
the Vj and Wj spaces are non-orthogonal and

L2(R) = Vk

⊕

⊕

`≥k

W`




where the direct sums
⊕

are not orthogonal, and the corresponding Pk

defined as in (5) are not orthogonal. In this case, there is a dual multireso-
lution analysis with scaling vector Φ∗ such that < φi

kj, φ
∗`
mn >= δi`δkmδjn,

k, j,m, n ∈ Z, i, ` = 1, . . . , A.
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Here is a precise definition of Gibbs’ phenomenon.

Definition 3.1 Let f : R→ R be a square integrable bounded function with a
jump discontinuity at 0: the limits limx→0+ f(x) = f(0+) and limx→0− f(x) =
f(0−) exist and are different. Without loss of generality we assume f(0+) >
f(0−). Suppose we have a multiresolution analysis of L2(R) with multires-
olution spaces (Vj) generated by a scaling vector. We say a sequence of op-
erators (Lj), Lj : L2(R) → Vj is admissible if limj→∞ Lj(f) = f in the
L2 sense, for all f ∈ L2(R). We say that a wavelet expansion of f with
respect to a scaling vector and an admissible sequence (Lj) shows a Gibbs’
phenomenon at 0 if there is a positive sequence (xm) with limm→∞ xm = 0
and limm→∞ Lm(f(xm)) > f(0+), or if there is a negative sequence (tm) with
limm→∞ tm = 0 and limm→∞ Lm(f(tm)) < f(0−).

Observe that we do not require the maps Lj to be orthogonal projections
since many interesting MRA’s are built from Riesz or biorthogonal bases,
rather than orthogonal bases. Moreover, we shall see that we can avoid Gibbs’
phenomenon by taking an admissible sequence of operators that are not even
projections. The definition is otherwise quite standard. Our main result is
to show that nearly all interesting scaling vectors generating multiresolution
analyses will suffer from Gibbs’ phenomenon. More precisely, we prove the
theorem below.

Theorem 3.2 Let Φ = (φ1, . . . , φA)T be a continuous, compactly supported
scaling vector with polynomial accuracy at least 2. If the multiresolution anal-
ysis is orthogonal or Φ has a dual biorthogonal basis Φ∗ that is compactly sup-
ported, then the corresponding wavelet expansion shows a Gibbs’ phenomenon
at least one side of 0.

To prove this result, we modify and generalize Shim and Volkmer’s [10] ap-
proach for the single scaling function orthonormal case in two directions: to
include biorthogonal bases and to include multiple scaling functions. We are
also able to replace a pair of rather technical derivative and decay hypotheses
in [10] with the hypotheses on compact support and polynomial accuracy. We
now state their main result from [10].

Theorem 3.3 (Shim, Volkmer) Let φ be a continuous scaling function gen-
erating an orthonormal multiresolution analysis that is differentiable at a dyadic
number with a nonvanishing derivative there, and that satisfies

|φ(t)| ≤ K(1 + |t|)−βfor t ∈ R

with constants K > 0 and β > 3. Then the corresponding wavelet expansion
shows a Gibbs’ phenomenon at one side of 0.
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Before we present the proof to Theorem 3.2, we first introduce some notation
and state and prove two lemmas. Let Qm denote the projection map onto the
space Vm defined above in (5). Define the reproducing kernel q(s, t) by

q(s, t) =
A∑

i=1

∑

j∈Z
φi(s− j)φ∗i(t− j) (6)

and qm by qm(s, t) = 2mq(2ms, 2mt), where (φ∗i) is the biorthogonal basis.
Observe that

(Q0f)(s) =
A∑

i=1

∑

j∈Z

〈
f, φ∗i(· − j)

〉
φi(s− j) =

∫

R
f(t)q(s, t)dt

∀f ∈ L2(R). Finally, let

H(t) =





1 if t > 0

−1 if t < 0

and define function r by r = H −Q0H.

Lemma 3.4 The coefficients ci in (4) satisfy ci =
∫
R φ∗i(t)dt and

∫
R qm(s, t)dt =

1 for m ∈ Z.

Proof. First observe that from the biorthogonality and (4), we have

∫

R
φ∗i(t)dx =

∫

R
φ∗i(t)

A∑

`=1

∑

k∈Z
c`φ

`(t− k)dt = ci

The second result follows from integrating (6) with respect to t and applying
our formula for ci and (4). 2

Lemma 3.5 Let Φ = (φ1, . . . , φA)T be a compactly supported, continuous scal-
ing vector with accuracy p ≥ 2 generating a multiresolution analysis for L2(R).
If the multiresolution analysis is orthogonal or Φ has a dual biorthogonal basis
Φ∗ that is compactly supported then the following are true:

(1) Q0H = H − r is continuous,
(2) r(t) is compactly supported and continuous, except for a jump disconti-

nuity at 0.
(3) r ∈ ⊕

j≥0 W ∗
j

(4)
∫
R tr(t)dt = 0.

Proof.
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1. First note that (Q0H)(s) =
∫
RH(t)q(s, t)dt =

∑
n,` φ`(s− n)dn,` where

dn,` =
∫ ∞

0
φ∗`(t− n)dt−

∫ 0

−∞
φ∗`(t− n)dt.

Each φ`(· − n) is continuous and compactly supported, so Q0H is continuous.

2. r is continuous except for a jump discontinuity at 0. This follows from Part
1 and the fact that r = H−Q0H. Thus it suffices to show that r has compact
support. To this end, observe that for t ≥ 0, Lemma 3.4 tells us that

r(t) = 1−
∫

R
q(t, y)H(y)dy = 2

∫ 0

−∞
q(t, y)dy

Similarly for t < 0, r(t) = −2
∫∞
0 q(t, y)dy. Now by the compact support of

the φ` and φ∗`, for t > M , where M is given by (3) we have

r(t) = 2
A∑

`=1

∑

n≥0

φ`(t− n)
∫ 0

−∞
φ∗`(y − n)dy = 0.

Let M∗ be defined by (3) for the dual scaling vector Φ∗. Then for t < −M∗−M

r(t) = −2
A∑

`=1

−M−M∗∑

n=−∞
φ`(t− n)

∫ ∞

0
φ∗`(y − n)dy = 0,

whence r(t) has compact support.

3. Next, for arbitrary j = 1, . . . , A and k ∈ Z, observe that

∫

R
r(t)φ∗j(t− k)dt =

∫

R
H(t)φ∗j(t− k)dx−

∫

R
(Q0H)(t)φ∗j(t− k)dt

=
∫

R
H(t)φ∗j(t− k)dt−

∫

R

∫

R
(H(y)q(t, y)dy)φ∗j(t− k)dt

which can be expressed as

=
∫

R
H(t)φ∗j(t− k)dt−

∫

R

∫

R
H(y)

A∑

m=1

∑

n∈Z
[φm(t− n)φ∗m(y − n)] φ∗j(t− k)dydt

=
∫

R
H(t)φ∗j(t− k)dt−

∫

R
H(y)

A∑

m=1

∑

n∈Z
(
∫

R
φm(t− n)φ∗j(t− k)dt)φ∗m(y − n)dy

=
∫

R
H(t)φ∗j(t− k)dt−

∫

R
H(y) · φ∗j(y − k)dy

so r ⊥ Φ∗
jk j = 1, . . . , A and k ∈ Z. Writing L2(R) = V ∗

0

⊕ (⊕
k≥0 W ∗

k

)
we

must have r ∈ ⊕
k≥0 W ∗

k .
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4. Part 3 tells us that r =
∑

`≥0 αi,`jψ
∗
i,`j where the ψ∗i,`j ∈ W ∗

` are the mul-
tiwavelets of the dual basis. Since Φ has polynomial accuracy at least 2,
t =

∑
n,` βn`φ

`(t− n) for some (βn`) so

∫

R
tr(t)dt =

∫

R





∑

n,`

βn`φ
`(· − n)





{∑
αl

ijψ
`
ij

}
= 0

since V0 ⊥ W ∗
j for each j ≥ 0, j ∈ Z.

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We first claim that r(t1) < 0 for some t1 > 0 or
r(t2) > 0 for some t2 < 0. For otherwise

∫
R tr(t)dt = 0 would force r(t) = 0

almost everywhere. This is impossible by Part 2 of Lemma 3.5. Now consider
the case r(t1) < 0 for some t1 > 0. Then r(t1) = 1 − ∫

R q(t1, y)H(y)dy < 0
implies that ∫

R
q(t1, y)H(y)dy > 1. (7)

We now show there must be a Gibbs’ phenomenon for the Haar wavelet

h(t) =





1 if 0 ≤ t ≤ 1

−1 if −1 ≤ t < 0

Clearly limm→∞ t12
−m = 0, but

lim
m→∞(Qmh)(t12

−m) = lim
m→∞

∫

R
2mq(t1, 2

my)h(y)dy

= lim
m→∞

∫ 1

0
2mq(t1, 2

my)dy −
∫ 0

−1
2mq(t1, 2

my)dy

= lim
m→∞

∫ 2m

0
q(t1, t)dt−

∫ 0

−2m
q(t1, t)dt

=
∫ ∞

−∞
q(t1, t)H(t)dt > 1

by (7). Thus h exhibits Gibbs’ phenomenon at 0. The case r(t2) > 0 for some
t2 < 0 is similar. 2

4 Positive Scaling Vectors with Compact Support

In this section we describe a procedure for constructing compactly supported
positive scaling vectors that avoid Gibbs’ phenomenon. The idea is to start
with a bounded, compactly supported scaling vector Φ with accuracy p ≥ 1,
with the additional requirements that at least one of components φj of Φ

8



is nonnegative, plus some conditions on the coefficients in (4). Theorem 4.1
below shows how to transform this scaling vector into a new compactly sup-
ported nonnegative scaling vector satisfying the following condition regarding
its coefficients in (4).

(A) If ck 6= 0 then φk (x) ≥ 0 ∀x ∈ R and ck > 0.

This new scaling vector satisfying (A) will then be used to construct a kernel
allowing one to avoid Gibbs’ phenomenon in Theorem 4.3 below. We will
complete the paper with two examples demonstrating the results.

Theorem 4.1 Suppose a scaling vector Φ = (φ1, . . . , φA)T is bounded, com-
pactly supported, has accuracy p ≥ 1, and satisfies:

Condition B. Assume φj (x) ≥ 0 ∀x ∈ R for some j and there exist finite
index sets Λi and constants gik for i 6= j such that:

B1. φ̃i (t) := φi (t) +
∑

k∈Λi
gikφ

j (t− k) ≥ 0 ∀x ∈ R,

B2. dj := cj −∑
i6=j

∑
k∈Λi

cigik ≥ 0,

B3. ci ≥ 0 for i 6= j

where the ci are the coefficients in (4) for Φ.

Then the nonnegative vector Φ̃ = (φ̃1, . . . , φ̃j−1, φj, φ̃j+1, . . . , φ̃A)T is a bounded,
compactly supported scaling vector with accuracy p ≥ 1 that satisfies (A) and
generates the same space V0 as Φ.

Proof. Φ̃ is nonnegative, bounded, and compactly supported by the support
and boundedness properties of Φ and the assumptions of Condition B.

To prove Φ̃ satisfies (A) and generates a partition of unity, we start by solving
B1 for φi(t) and substituting this into the original partition of unity (4):

∑

n∈Z





∑

i6=j

ci


φ̃i(t− n)− ∑

k∈Λi

gikφ
j(t− k − n)


 + cjφ

j(t− n)



 = 1

so that

∑

n∈Z

∑

i6=j

ciφ̃
i(t− n)−∑

i 6=j

∑

k∈Λi

cigik

∑

n∈Z
φj(t− k − n) +

∑

n∈Z
cjφ

j(t− n) = 1.

Substituting m = n + k into the second expression gives:

∑

n∈Z

∑

i 6=j

ciφ̃
i(t− n)−∑

i 6=j

∑

k∈Λi

cigik

∑

m∈Z
φj(t−m) +

∑

n∈Z
cjφ

j(t− n) = 1
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or
∑

n∈Z

∑

i 6=j

ciφ̃
i(t− n) +

∑

n∈Z



cj −

∑

i 6=j

∑

k∈Λi

cigik



 φj(t− n) = 1.

Since φ̃j = φj, we get the partition of unity

A∑

i=1

∑

n∈Z
diφ̃

i(t− n) = 1

where di = ci ≥ 0 for i 6= j by assumption B3, and

dj = cj −
∑

i 6=j

∑

k∈Λi

cigik

which is nonnegative by assumption B2. This also shows that (A) holds for Φ̃.

To see that Φ̃ forms a Riesz basis for V0, assume without loss of generality
that j = A and note that

ˆ̃Φ(ω) = B(ω)Φ̂(ω)

where B(ω) is an A× A upper triangular matrix defined by

B(ω) =




IA−1 ~m

~0 1




where IA−1 is the A − 1 × A − 1 identity matrix, ~0 is a A − 1 row vector of
0’s, and ~m is an A− 1 column vector whose components mi, i = 1, . . . , A− 1,
are given by

mi =
∑

k∈Λi

gike
−ikω,

We compute the A× A matrix

EΦ̃(ω) =
∑

k∈Z

ˆ̃Φ(ω + 2πk) ˆ̃Φ†(ω + 2πk)

=
∑

k∈Z
B(ω + 2πk)Φ̂(ω + 2πk)Φ̂†(ω + 2πk)B†(ω + 2πk)

= B(ω)


∑

k∈Z
Φ̂(ω + 2πk)Φ̂†(ω + 2πk)


 B†(ω)

= B(ω)EΦ(ω)B†(ω)

By definition B(ω) is nonsingular, so that B†(ω) is also nonsingular. Since
Φ forms a Riesz basis for V0, we have that EΦ(ω) is also nonsingular. Thus
EΦ̃(ω) is nonsingular and thus by virtue of Theorem 3.2 in [3], Φ̃ generates a
Riesz basis for V0. Moreover, Φ̃ must have the same accuracy p ≥ 1 as Φ.
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We must finally show that Φ̃ satisfies a matrix refinement equation. Let

B =




IA−1
−→g

~0 1




where IA−1 and ~0 are as defined above and the components gi, i = 1, . . . , A−1
of −→g are given by

gi =
∑

k∈Λi

gik.

Then
Φ̃(t) = BΦ(t) =

∑

k

BCkΦ(2t− k).

But B is nonsingular so that we can write

Φ(2t− k) = B−1Φ̃(2t− k)

and thus observe that the refinement equation coefficients for Φ̃ are

C̃k = BCkB
−1 2.

Remark. A sufficient condition on φj for the existence of these index sets for
Condition B1 is φj > 0 on an interval J , where J̄ = [a, b] and b− a ≥ 1.

We next show that we can avoid Gibbs’ by using a special reproducing ker-
nel. Of course, the reproducing kernel here corresponds to map into Vm that
is not a projection. Note that in Theorem 4.3 below the compact support
and positivity together allow a improved statement over our previous result
(Proposition 3.7 of [9]) and that of Shen and Walter (Proposition 4.3 of [11]):
we can specify the resolution of the kernel and can give a tighter upper bound
on the approximation in Vm. While we require the positivity Condition B, we
do not need the continuity assumption required in the propositions of [9], [11]
just mentioned.

We first define the reproducing kernel

K(s, t) =
∑

cj 6=0

∑

k∈Z

(
cj∫
R φj

)
φj(t− k)φj(s− k).

For the sake of notation, we define Km(s, t) by

Km(s, t) = 2mK(2ms, 2mt).

Before proving the theorem indicating the absence of Gibbs’, we establish
some key facts about the kernel K.
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Proposition 4.2 If the bounded, compactly supported scaling vector Φ with
accuracy p ≥ 1 satisfies (A), then

(1)
∫
RKm(s, t)ds = 1 ∀m ∈ Z, t ∈ R

(2) Km(s, t) ≥ 0 ∀m ∈ Z, t ∈ R
(3) For each γ > 0, if m > log2(

M
γ

) then sup|s−t|>γ Km(s, t) = 0.

Proof. The proof of 1. follows from (4):

∫

R
Km(s, t)ds = 2m

∑

cj 6=0

∑

k∈Z

(
cj∫
R φj

)
φj(t− k)φj(s− k)

∫

R
φj(2ms− k) ds

=
∑

cj 6=0

∑

k∈Z
cjφ

j(t− k) =
A∑

j=1

∑

k∈Z
cjφ

j(t− k) = 1

The proof of (2) follows directly from (A).

To see 3., observe that |supp (φj(2m · −k)) | ≤ M2−m < γ where M is defined
in (3). So if |t− s| > γ then φj(2ms− k)φj(2mt− k) = 0 ∀k ∈ Z. Thus

sup
|s−t|>γ

Km(s, t) = 2m
∑

cj 6=0

∑

k∈Z

(
cj∫
R φj

)
sup

|s−t|>γ
φj(2ms− k)φj(2mt− k) = 0. 2

Theorem 4.3 Let Φ = (φ1, . . . , φA)T be a bounded, compactly supported scal-
ing vector with accuracy p ≥ 1 satisfying (A). Suppose that M1 ≤ f(t) ≤ M2

on [a, b]. Then for each δ > 0 and m > log2

(
M
δ

)
,

M1 ≤ fm(t) ≤ M2

whenever t ∈ (a + δ, b− δ). Here, fm ∈ Vm where

fm(t) =
∫

R
Km(s, t)f(s)ds.

Proof. For t ∈ (a + δ, b− δ) choose m > log2

(
M
δ

)
and write fm(t) as

fm(t) =
∫

R
Km(s, t)f(s)ds =

(∫ a

−∞
+

∫ b

a
+

∫ ∞

b

)
Km(s, t)f(s)ds

≤ 2 sup
|s−t|>δ

Km(s, t)
∫

R
|f(s)|ds + M2

∫

R
Km(s, t)ds

= M2

using the Proposition 4.2 above. The proof that M1 ≤ fm(t) is similar. 2

We conclude by giving two examples that illustrate the results of Theorems 4.1
and 4.3. The first example involves the scaling vector of Donovan, Geronimo,
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Hardin, and Massopust [2] while the second utilizes the vector constructed by
Plonka and Strela [8].

Example 4.4 In [2], the authors constructed a continuous, orthogonal, sym-
metric scaling vector that satisfies the matrix refinement equation Φ(t) =

∑3
k=0 CkΦ(2t − k) where C0 =




3/5 4
√

2/5

−√2/20 −3/10


, C1 =




3/5 0

9
√

2/20 1


, C2 =




0 0

9
√

2/20 −3/10


, and C3 =




0 0

−√2/20 0


. Φ has accuracy p = 2 and is com-

pactly supported: supp(φ1) = [0, 2] and supp(φ2) = [0, 1]. The partition of unity

condition (4) holds with c1 =
(
1 +

√
2
)−1

, c2 =
√

2
(
1 +

√
2
)−1

. To satisfy

Theorem 4.1 we choose φ̃2 to be φ2 since it is nonnegative. We create φ̃1 by tak-
ing Λ1 = {0, 1} with g10 = g11 = 0.5: φ̃1 (t) = φ1 (t)+0.5 (φ2 (t) + φ2 (t− 1)) ≥
0 ∀t. The new scaling vector Φ̃ partition of unity coefficients from Condition B
are d1 = c1, d2 = c2− c1 (g10 + g11) > 0 . Note that φ̃1 is nonnegative, pictured
below in Figure 1. Theorems 4.1 and 4.3 apply to this Φ̃. Notice also that this
transformation preserves the symmetry as well as the compact support.

1 2

1

2

Fig. 1. The positive scaling function φ̃1

Example 4.5 Using a two-scale similarity transform in the frequency do-
main, Plonka and Strela constructed the following scaling vector Φ in [8].
It satisfies the matrix refinement equation Φ(t) =

∑2
k=0 CkΦ(2t − k) where

C0 = 1
20



−7 15

−4 10


, C1 = 1

20




10 0

0 20


, and C2 = 1

20



−7 −15

4 10


. This scaling

vector is not orthogonal, but it is compactly supported on [0, 2] with accuracy
p = 3. Moreover, φ2 is nonnegative and symmetric about t = 1, and φ1 is
antisymmetric about t = 1. The partition of unity condition (4) holds with
c1 = 0, c2 = 1/2. To satisfy Theorem 4.1 we choose φ̃2 to be φ2 since it is
nonnegative. We create φ̃1 by taking g10 = 1.6: φ̃1 (t) = φ1 (t) + 1.6φ2 (t) ≥ 0
∀t. The new scaling vector Φ̃ partition of unity coefficients from Condition B
are c1 = d1 = 0 and d2 = c2 − c1 (

∑
gik) = c2 − 0 > 0. We observe that creat-

ing a nonnegative φ̃1 was not necessary for avoiding Gibbs’, since the kernel

13



K (s, t) uses only φ2 and its translates in Theorem 4.3.
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