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Abstract

A generalization of McFarland's iterative scheme [12] for solving quadratic equations in

Banach spaces is reported. The notion of a uniformly contractive system is introduced

and subsequently employed to investigate the convergence of a new iterative method

for approximating solutions to this wider class of multipower equations. Existence and

uniqueness of solutions are addressed within the framework of a uniformly contractive

system. To illustrate the use of the new iterative scheme, we employ it when approx-

imating solutions to a Hammerstein equation and a Chandrashekar equation. Due to

the nature of the examples, we have found that wavelet/scaling function bases are a

natural choice for the implementation of our iterative method.
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1 Introduction

We seek the solution x 2 X, where X is a Banach space to the multipower equation:

y = x+ �L(x; � � � ; x| {z }
k times

) (1)

Here, y 2 X, and L : Xk 7! X is a k-linear operator. The norm of L is given in the usual
way:

jjLjj = sup
jjxijj<1

jjL(x1; : : : ; xk)jj:
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We shall consider for k � 2 the linear map

Lx(�) := L( x; : : : ; x| {z }
k � 1 times

; �);

and observe that
jjLxjj � jjLjj � jjxjjk�1: (2)

The following lemma gives a bound that is useful when measuring the e�ectiveness of our

iterative scheme. The proof of the lemma is similar to that of Theorem 7.3 in [15], and is

thus omitted.

Lemma 1.1 Let L : Xk 7! X be a k-linear operator with k � 2. For w; z 2 X,

jjwjj; jjzjj �M ,

jjLw � Lzjj � (jjLjjMk�2(k � 1))jjw � zjj: (3)

McFarland ([12]) considered k = 2 in (1) and derived an iterative scheme for approximating
solutions to quadratic equations in Banach spaces. He obtains convergence results for his

method by using a continued fraction approach. In order to generalize his method to arbitrary
k, we have employed the contractive mapping theorem. We give conditions on the operators
involved and the initial guesses that will guarantee convergence of the iterative scheme. The
use of the contractive mapping theorem yields a uniqueness of solution result as well.

We then show that these results can be generalized to a wider class of equations where
the operator L need not be linear in the �rst k�1 variables, and an applications to boundary

value problems is given. We conclude Section 2 with a uniqueness result for \small" solutions

of equation (1).
In order to approximate solutions to (1), we consider the �xed point problem

Q(x) = x; (4)

where, for appropriate � 2 IR and x 2 X, Q : X 7! X is given as follows:

Q(x) = (�Lx + I)�1(y): (5)

The di�culty lies with inverting an in�nite dimensional linear operator, so the standard
approach is to use successive subspaces fVng and approximate the solution to the problem

in �nite dimensional settings. Uniformly contractive systems will be developed to show that

these �nite dimensional approximations do indeed converge to the true solution of (4).

To formulate the �nite dimensional approximating scheme, we �rst assume that X has a
Schauder basis fekg � X. Then each x 2 X has a unique representation

x =
1X
k=1

<e0k; x> ek;

where fe0kgk2ZZ � X 0 satisfy <e0k; ej>= �kj.
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Next, let fkng � IN be an increasing sequence. We then de�ne the projection operators fSng
as follows:

Sn(x) =
knX
j=1

< e0j; x > ej: (6)

Since X is complete, sup jjSnjj < 1. For convenience, we assume that jjSnjj = 1. We then

take as our �nite dimensional subspaces Vn = Sn(X), and de�ne the linear map Ln
x : X 7! Vn

as:

Ln
x(�) = Sn(Lx(�)) (7)

We recall that a k-linear operator L : Xk 7! X is compact if for any bounded set B � X,

the set L(Bk) is relatively compact. For more details on compact multilinear maps, please

see [14, 18, 20].
The next result illustrates that compactness is su�cient to ensure that Ln

x ! Lx.

Lemma 1.2 Suppose that X has a Schauder basis.

i) If L is compact in its kth variable, then for each x 2 X,

lim
n!1

jjLn
x � Lxjj = 0 (8)

ii) If L is compact, then

lim
n!1

jjLn � Ljj = 0 (9)

Here, Ln = SnL.

Proof. It is clear that Sn converges uniformly to the identity map I on relatively compact

sets. Since Lx is a compact map, for any bounded set B � X, the set Lx(B) is relatively
compact. Now Lx is linear, so

jjLn
x � Lxjj = jj(Sn � I)Lxjj = sup

jjwjj�1
jj(Sn � I)Lx(w)jj ! 0:

which proves i).

If L is compact, then L(Bk) is relatively compact for any bounded set B � X, so

lim
n!1

jjLn � Ljj = lim
n!1

jj(Sn � I)Ljj ! 0: 2

The preceeding result will be used in Section 4 when we derive conditions that guarantee

convergence of the sequence of solutions obtained in �nite dimensional subspaces to the

true �xed point solution of (4). Su�cient conditions on the operator L for this convergence

compare favorably with those given in [1].

In order to obtain the results of Section 4, we have found it convenient to develop the
notion of a uniformly contractive system. Such a system is de�ned in Section 3 and is a

useful framework with which to show that zn ! z, where z solves (4) and the zn are the
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�xed points of the map Qn : X ! Vn. Uniformly contractive systems have also been used in

[19] with another iterative scheme for solving certain nonlinear operator equations.

We conclude the paper with a section of examples illustrating the application of our
iterative scheme to approximating solutions of certain multipower equations. We consider

approximating solutions to the

i) Hammerstein equation

y(s) = x(s) + �
Z b

a
K(s; t)(x(t))2dt (10)

where X = L2[a; b].

ii) Chandrashekar equation

1 = H(s) +
1

2
�sH(s)

Z 1

0

H(t)

s+ t
dt (11)

where X = L2[0; 1].

In both cases, we use a sequence of closed nested subspaces V0 � � � � � Vn � X. Such

sequences of subspaces have been found to be particularly useful in many applications when
the Vn form a so-called multiresolution analysis (see [7], [13], and references therein). We may

then employ a sequence of wavelet bases f nkg � Vn for providing approximate solutions
to the multipower equations. These bases are orthonormal and compactly supported. Such
properties are desirable in view of the number of integrals that must be computed when we
devise a scheme for obtaining approximate solutions to (i) and (ii) above. A discussion of
the algorithm used for obtaining approximate solutions is also included in this section.

2 Multipower Operator Equations

We begin this section with a lemma that will be of use later in the section.

Lemma 2.1 For k � 2 and 0 < � < (k�1)k�1
kk

, there exists some D > 0 such that

�(1 +D)k�1

1� �(1 +D)k�1
< D <

1

k � 1
(12)

Proof. Observe that the left inequality in (12) is equivalent to

� (1 +D)k � (1 +D) + 1 < 0:

Now let f(v) = �vk�v+1. Clearly f(1) > 0 and since � < (k�1)k�1
kk

, we �nd that f( k
k�1) < 0.

Thus there exists some v = 1+D satisfying 1 < v < k
k�1 so that the desired inequality (12)

holds.2
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The following theorem gives conditions on �, L, and y to ensure that the iteration scheme

xn+1 = Q(xn) (13)

converges to the true �xed point of (4). Such conditions also lead to the de�nition of a sphere

S wherein any initial guess x0 will lead to the unique �xed point in sphere U � S.

Theorem 2.2 If

0 < j�j � kLk � kykk�1 = � <
(k � 1)k�1

kk
; (14)

then there exists a solution xs to (1), unique in the open sphere

S = fz 2 X j jjz � yjj <
jjyjj

k � 1
g: (15)

If the initial guess x0 2 S, then
lim
n!1

xn = xs (16)

where

xn+1 = Q(xn):

The solution xs is contained in the closed sphere

U = fz 2 X j jjz � yjj � Djjyjj <
jjyjj

k � 1
g:

where D is given in Lemma 2.1.

Proof. Let x0 2 S and set � = j�j � kLk � kykk�1. By Lemma 2.1, we can choose D so that

jjx0 � yjj

jjyjj
< D <

1

k � 1

and
�(1 +D)k�1

1� �(1 +D)k�1
< D:

Note that x0 is in the closed sphere U . We claim that Q(U) � U .

To verify our claim, let x 2 U . Then

Q(x)� y = (�Lx + I)�1(I � (�Lx + I))(y)

so that

jjQ(x)� yjj �
jj�Lxjj

1� jj�Lxjj
jjyjj

�
jj�Ljj((1 +D)jjyjj)k�1

1� jj�Ljj((1 +D)jjyjj)k�1
jjyjj

=
�(1 +D)k�1

1� �(1 +D)k�1
jjyjj

� Djjyjj
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Thus Q(x) 2 U , which proves the claim.

Next we show that Q : U 7! U is a contraction mapping, with contraction factor

r =
�(1 +D)k�2(k � 1)

(1� �(1 +D)k�1)2
< 1

(To see that r < 1; note that replacing D with 1

k�1 and � with (k�1)k�1
kk

yields r = 1). In

order to prove that Q is indeed a contraction, let x;w 2 U: Then

Q(x)�Q(w) = (�Lx + I)�1(�Lw � �Lx)(�Lw + I)�1y

which along with Lemma 1.1 and repeated use of (2) yields:

jjQ(x)�Q(w)jj �
jj�Ljj(jjyjjk�2(1 +D)k�2(k � 1))jjw � xjj

(1� jj�Lxjj)(1� jj�Lwjj)
jjyjj

�
�(1 +D)k�2(k � 1)jjw � xjj

(1 � jj�Ljj((1 +D)jjyjj)k�1)2

= rjjw � xjj: (17)

Now since Q is a contraction mapping with Q(U) � U , we can apply the contraction
mapping principle to the iterative scheme xn+1 = Q(xn) and conclude that the iterates must

converge to the unique �xed point xs 2 U of Q. Since D can be chosen arbitrarily close to
1

k�1 , the solution must be unique in the open sphere S.2

Corollary 2.3 The bound (k�1)k�1
kk

on j�j � kLk � kyk in (14) is optimal for X = IR.

Proof. Consider the equation

1 = x�
(k � 1)k�1

kk
xk: 2

Some remarks are in order before we conclude this section. We �rst note that the iterative

method described in Theorem 2.2 can be generalized slightly to solve equations of the form:

y = Ax+ �L(x; � � � x); (18)

where A and A�1 are linear and bounded. Putting ya = A�1y and La = A�1L, we have

ya = x+ �La(x; � � �x);

which is of the form (1) and can thus be solved using Theorem 2.2.
From Lemma 2.1, we observe that for � near 0, we can pick D near 0 and conclude that

the solution to (1) is close to y, thus improving our choice of the initial guess in the iterative

scheme (13).
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In the special case k = 2, it is useful to compare our results with those obtained elsewhere.

In [12], McFarland considered the equation (18) with A invertible and linear. McFarland

showed in his Theorem 3 that the iterative scheme

xn+1 = (A+ �Lxn)
�1y = (I + �Laxn)

�1ya

converges to a solution of (18) if

0 < jjA�1jj � j�j � kLk � kyak � � <
1

4
(19)

and if
1� (1� 4�)

1

2

2
� jj�Lax0jj <

1

2
: (20)

If our condition (14) with k = 2 is satis�ed, then so is McFarland's condition (19). Note
that McFarland's requirement (20) on the initial condition x0 may be more di�cult to verify

than the condition (15) jjx0 � yjj < jjyjj. McFarland does not use the contraction mapping

principle in his proof, and obtains no uniqueness results.
In [17], Rall solves (1) subject to (14), both with k = 2. He uses a series approach and

shows in his Theorem 19 that the solution x is unique in the sphere

fz 2 X j jjz � xjj <

q
1 � 4j�jjjLjjjjyjj

2j�jjjLjj
g (21)

When 4j�j � kLk � kyk is near 1, Rall's uniqueness condition (21) does not give as much

information as our condition (15). On the other hand, for � near 0, Rall's sphere is much

larger than our sphere S in (15).
Argyros uses a di�erent iterative method and an auxiliary quadratic equation in [1] to

obtain several existence and uniqueness results for equation (1) when k = 2. We state a

corollary of Argyros [1] for the purpose of comparison to our results.

Corollary 2.4 (Argyros) For any y 2 X such that kyk < 4(j�j � kLk)�1,

(i) equation (1) has a unique solution x 2 U(y; a), where

a = (1 � 2j�j � kLk � kyk)(2j�j � kLk)�1;

(ii) moreover x 2 �U(y; b), where

b = [1 � 2j�j � kLk � kyk � (1� 4j�j � kLk � kyk)1=2](2j�j � kLk)�1:

Argyros' uniqueness ball (i) is bigger than ours (15) but his existence ball (ii) is the same as

ours. We summarize this in the following corollary.
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Corollary 2.5 In the case k = 2, the solution xs is in the closed sphere

U = fz 2 X : kz � yk � ~Dkykg

= fz 2 X : kz � yk � (1 � 2j�j � kLk � kyk � (1 � 4j�j � kLk � kyk)1=2)=(2j�jkLk)g:

Proof. It is easy to see that there exists a unique root v0 2 (1; k
k�1) for the function f(v)

given in the proof of Lemma 2.1. Then for each v 2 (v0;
k

k�1), D = v � 1 satis�es inequality

(12) and so by Theorem 2.2

ky � xsk � Dkyk = (v � 1)kyk:

Hence ky � xsk � (v0 � 1)kyk. In the case k = 2, the quadratic formula yields

(v0 � 1)kyk � (1� 2j�j � kLk � kyk � (1� 4j�j � kLk � kyk)1=2)=(2j�jkLk):2

The linearity of L in the �rst k � 1 variables is not critical for the results of this section,

and we can generalize them somewhat.

Proposition 2.6 Let L : X �X ! X satisfy the following:

(1) Lx := L(x; �) is a bounded linear operator for all x 2 X,

(2) there exist a � � 2 and C > 0 such that

kL(x; v)k � C kxk��1 kvk

and

kLx � Lvk � C(�� 1)(max(kxk ; kvk))��2 kx� vk

for all x; v 2 X.

Then Theorem 2.2 and Corollary 2.5 hold for this operator L with kLk and k replaced by C

and �, respectively, throughout the theorem and corollary.

Proof. Note that condition (2) is just a minor generalization of inequalities (2) and (3).

The proofs of Theorem 2.2 and Corollary 2.5 are valid with these adjustments. 2

It is clear from Lemma 1.1 that a bounded k-linear operator will satisfy the hypotheses of
this proposition. The next example is an important example of an operator of this type that
is not k-linear.

Example 2.7 De�ne L : C [0; 1]� C [0; 1]! C [0; 1] by

L(x; v)(s) =
Z 1

0
h(s; t) [x(t)]��1 v(t) dt;
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where h 2 C([0; 1]2) and � � 2: Then L is linear in v and

kL(x; v)k1 � kxk��11 kvk1






Z 1

0
h(s; t) dt






1
:

Moreover,

k(Lx � Lw)(v)k1 =






Z 1

0
h(s; t)([x(t)]��1 � [w(t)]��1)v(t) dt






1

� (� � 1)M��2





Z 1

0
h(s; t) dt






1
kx�wk1 kvk1 ;

where M = max(kxk1 ; kwk1); by the lemma below.

Lemma 2.8 For x;w � 0; � � 2;���x��1 �w��1
��� � (� � 1)(max(x; �))��2 jx� wj : (22)

Proof. Without loss of generality, assume w < x: Fix w and let f(x) = (�� 1)x��2(x�w),
and g(x) = x��1 � w��1. Then

f 0(x) = (�� 1)x��2 + (x� w)(� � 1)(�� 2)x��3 (23)

� (�� 1)x��2

= g0(x):

Since f(w) = 0 = g(w), inequality (23) yields (22). 2

Remark. The class of boundary value problems (see for example [10, 11])

x00(t) + �a(t)x�(t) = f(t)

with t 2 [0; 1], � � 2 with appropriate boundary conditions can be transformed into

x(t) = �

Z 1

0
K(s; t)a(s)x�(s)ds+ F (t):

Then Proposition 2.6 will apply with suitable restrictions on � and a(t).

For the case y = 0 in equation (1), our iterative scheme

xn = (�Lxn + I)�1(y)

will yield only the trivial solution x = 0:We show below that this is the only \small" solution.

To obtain \large" solutions, schemes such as the Newton-Kantorovich method ([2]) can be
used. For many problems, the Newton-Kantorovich method will be faster than our iterative

scheme. However, if the Fr�echet derivative �L0(x; : : : ; x) is not de�ned or is signi�cantly

more expensive to numerically compute than �Lx, then our scheme is preferable.
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Proposition 2.9 Equation (1) has at most one solution x 2 X for which

kxk < (
1

k kLk
)

1

k�1 : (24)

Proof. For the sake of reaching a contradiction, suppose that u and v are distinct solutions

to equation (1) satisfying (24). Then

u� v = L(u; : : : ; u)� L(v; : : : ; v)

= L(u� v; u; : : : ; u) + L(v; u� v; u; : : : ; u) + � � � + L(v; : : : ; v; u� v)

so by (24) we have

ku� vk � k ku� vk kLk (max(kuk ; kvk))k�1 < ku� vk ;

which is a contradiction. 2

3 Uniformly Contractive Systems

We now introduce the notion of a uniformly contractive system (UCS). The role of the

UCS is to provide a general framework for obtaining iterative solutions of operator equations
that involve contraction mappings. In particular, we will use the concept of the UCS in
conjunction with the method discussed in Section 2 to construct approximate solutions to
certain multipower equations.

De�nition 3.1 Let X be a Banach space, fVng a sequence of closed subspaces of X such

that

lim
n!1

dist(Vn; x) = 0

for each x 2 X. Let U be a closed set in X and de�ne the sets Un = Vn\U and the operators

Qn : X 7! Vn. We say that fUn; Qng is a uniformly contractive system (UCS) if conditions

(C1) and (C2) below hold.

(C1) There exists a c 2 IR, 0 < c < 1, and an N 2 IN such that if n � N and x; y 2 U; then

Qn(U) � Un and jjQn(x)�Qn(y)jj � cjjx� yjj: (25)

(C2) For any x; y 2 U and � > 0, there exists an N 2 IN such that if k � j � N then

jjQk(x)�Qj(y)jj � cjjx� yjj+ �: (26)

Note that the subspaces fVng need not be nested, so that the �nite element method can
be used within the context of a UCS.
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Theorem 3.2 Let fUn; Qng satisfy (C1) above. Then condition (C2) is equivalent to the

existence of a contraction map Q : U 7! U , de�ned by Q(x) = limn!1Qn(x), such that

jjQ(x)�Q(y)jj � cjjx� yjj

for x; y 2 U .

Proof. Assume condition (C2) holds. We �rst show that the map Q is well de�ned. Fix

x 2 U and � > 0: Choose N as prescribed in (C2) and set y = x in (26). Then for k � j � N

we have

jjQk (x)�Qj(x)jj � �:

Thus fQj(x)g is Cauchy. Since X is complete, lim
n!1

Qn(x) exists. Noting that U is closed

and Qn(x) 2 Un � U for all n yields

lim
n!1

Qn(x) = Q(x) 2 U:

Now let x; y 2 U and � > 0: Choose N so that

jjQ(x)�QN(x)jj < � and jjQ(y)�QN(y)jj < �:

Then

jjQ(x)�Q(y)jj � jjQ(x)�QN(x)jj+ jjQN(x)�QN(y)jj+ jjQN(y)�Q(y)jj

� �+ cjjx� yjj+ �: (27)

Since � is arbitrary, we have

jjQ(x)�Q(y)jj � cjjx� yjj:

Next we assume the existence of the map Q, and �x x; y 2 U and � > 0. By the de�nition
of Q, there exists an N 2 IN such that if k � j � N then

jjQk(x)�Qj(y)jj � jjQk(x)�Q(x)jj+ jjQ(x)�Q(y)jj+ jjQ(y)�Qj(y)jj

� �+ cjjx� yjj+ � (28)

Thus condition (C2) is satis�ed. 2

We observe that the equations Qn(x) = x all have unique �xed points zn 2 U by the con-
traction mapping principle (see [9]). Our next result shows that these �xed points converge

to zs, the unique �xed point of the map Q 2 U .

Theorem 3.3 Let fUn; Qng be a UCS. Then

lim
n!1

zn = zs;

where

Q(zs) = zs:
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Proof. Let � > 0 and 0 < c < 1 be the contractive constant for fUn; Qng. By Theorem 3.2,

we can choose N 2 IN so that n � N implies that

jjQ(zs)�Qn(zs)jj < (1� c)�:

Then

jjzs � znjj = jjQ(zs)�Qn(zn)jj

� jjQ(zs)�Qn(zs)jj+ jjQn(zs)�Qn(zn)jj

< (1 � c)�+ cjjzs � znjj:

So
jjzs � znjj(1� c) < (1� c)�

whence
jjzs � znjj < �:

Thus lim
n!1

zn = zs. 2

Theorem 3.4 Let fUn; Qng be a UCS such that U is bounded and fQng converges to Q

uniformly on U . Let N 2 IN be given as per condition (C1). Beginning with any k � N and

initial guess xk 2 Uk, the iterative scheme

xn+k+1 = Qn(xn+k) (29)

will converge to the �xed point of Q in U :

lim
n!1

xn+k = zs = Q(zs):

Remark. We note at this time that to numerically implement (29), a hierarchical basis,

such as one provided by a multiresolution analysis, is required.

Proof. Fix � > 0. By the uniform convergence of fQng, there is some M1 � k � N such

that for n � m �M1, we have

jjxn � xmjj = jjQn�1(xn�1)�Qm�1(xm�1)jj

� jjQn�1(xn�1)�Qm�1(xn�1)jj+ jjQm�1(xn�1)�Qm�1(xm�1)jj

� �+ cjjxn�1 � xm�1jj (30)

Now choose M2 > M1 such that

cM2�M1 <
�

2diam(U)
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Then for any n � m �M2, we can repeat the iteration (30) m�M1 times to obtain

jjxn � xmjj � �
m�M1�1X

j=0

cj + cm�M1 jjxn�(m�M1) � xM1
jj

� �
m�M1�1X

j=0

cj + 2cm�M1diam(U)

� �(
m�M1�1X

j=0

cj + 1) (31)

Thus fxng is Cauchy, with lim
n!1

xn = z 2 U:

Now fUn; Qng is a UCS, so for n � N ,

jjQ(z)� zjj � jjQ(z)�Qn(z)jj+ jjQn(z)�Qn(xn)jj+ jjQn(xn)� zjj

� jjQ(z)�Qn(z)jj+ cjjz � xnjj+ jjxn+1 � zjj

For n su�ciently large, we have

jjQ(z)� zjj � jjQ(z)�Qn(z)jj+ cjjz � xnjj+ jjxn+1 � zjj � �

since fQng converges to Q pointwise and lim
n!1

xn = z. As � is arbitrary, we have Q(z) = z.

Since Q has a unique �xed point in U , we conclude that zs = z. 2

Remark. The convergence rate for the scheme (29) to the solution z will be governed by
the size of the contraction constant c of the UCS, as well as the diameter of U and the

uniform convergence of the operators Qn on U . To be precise, for any given � > 0, there are

M1;M2 2 IN such that
jjQn(x)�Qm(x)jj < �

for all m;n �M2 �M1 and x 2 U . Then

jjz � xmjj � �

0
@M2�M1X

j=0

cj + 1

1
A

for m �M2.

4 Applications of Uniformly Contractive Systems for

X Possessing a Schauder Basis

Let X be a Banach space with Schauder basis fekg � X. Consider the operator

R = (�Ln
x + I)Sn

13



as a map from Vn into Vn. Note that R�1 : Vn 7! Vn exists when jj�Ln
xSnjj � jj�Lxjj < 1.

In matrix terms, with respect to the basis fekg, R�1 is formed by inverting the principal

submatrix (corresponding to Vn) of the matrix representation of the linear operator (�Ln
x +

I)Sn.

Let Jn : Vn 7! X denote the natural injection operator. De�ne (�Ln
x + Sn)

�1 : X 7! X

by

(�Ln
x + Sn)

�1 = JnR
�1Sn

and de�ne Qn : X ! Vn to be

Qn(x) = (�Ln
x + Sn)

�1y (32)

We now give convergence conditions for the �nite dimensional operators fQng:

Theorem 4.1 Suppose that X has a Schauder basis fekg.

(A) If L : Xk 7! X is compact in the kth variable, then Qn converges to Q pointwise on

fx 2 X : jj�Lxjj < 1g:

(B) If L : Xk 7! X is compact and � < 1, then Qn converges to Q uniformly on

U� = fx 2 X : jj�Ljj � jjxjjk�1 � �g:

Proof. Let x 2 fx 2 X : jj�Lxjj < 1g and observe that

Q(x)�Qn(x) = (�Lx + I)�1y � (�Ln
x + Sn)

�1Sn(y)

= (�Lx + I)�1(y � Sn(y)) + (�Lx + I)�1((�Ln
x + Sn)

�(�Lx + I))(�Ln
x + Sn)

�1Sn(y):

Since (�Ln
x + Sn)

�1Sn(y) 2 Vn, we have

(Sn � I)(�Ln
x + Sn)

�1Sn(y) = 0:

Thus

Q(x)�Qn(x) = (�Lx + I)�1(y � Sn(y)) + (�Lx + I)�1(�Ln
x � �Lx)(�L

n
x + Sn)

�1Sn(y)

which yields

jjQ(x)�Qn(x)jj �
1

1� jj�Lxjj
(jjy � Sn(y)jj+ jj�Ln

x � �Lxjj � jj(�L
n
x + Sn)

�1Sn(y)jj)

�
jjy � Sn(y)jj

1 � jj�Lxjj
+
jj�Ln

x � �Lxjj � jjyjj

(1� jj�Lxjj)2
:

14



To prove (A), we note that for each x 2 X, Lx is a compact linear map. Now

jj�Ln
x � �Lxjj ! 0

by Lemma 1.2 (i) so that

jjQ(x)�Qn(x)jj ! 0

thus proving (A).

Next assume that L is compact and that x 2 U�. Then

jjQ(x)�Qn(x)jj �
jjy � Sn(y)jj

1� �
+
jj�Ln � �Ljj � jjyjj

(1 � �)2
�

�

jj�Ljj
;

and since jj�Ln��Ljj ! 0 uniformly on U� by Lemma 1.2 (ii), Qn converges to Q uniformly
on U�. This proves (B).2

Remark. For the sake of notation, we have chosen L to be compact in the kth variable.
The result holds as long as L is compact in at least one variable.

We now state and prove our main result.

Theorem 4.2 Suppose that X has a Schauder basis fekg and that

0 < j�j � kLk � kykk�1 = � <
(k � 1)k�1

kk

(a) If L is compact in at least one variable then fUj; Qjg is a UCS.

(b) If L is compact then the iterative scheme (29) given in Theorem 3.4 converges.

Proof. The �rst part of the proof is needed for both (a) and (b). Choose K 2 IN so that if

j � K then

jjSj(y)� yjj+
�(1 +D)k�1

1 � �(1 +D)k�1
� D

where the existence of D is guaranteed by Lemma 2.1. Consider the closed ball

U = fz 2 X : jjz � yjj � Djjyjjg:

Then, arguing similarly to the proof of Theorem 2.2, for x 2 U and j � K, we have

jjQj(x)� yjj = jj((�Lj
x + Sj)

�1 � Sj)y + (Sj � I)yjj

= jj(�Lj
x + Sj)

�1(Sj � (�Lj
x + Sj))y + (Sj � I)yjj

�
jj�Lxjj

1� jj�Lxjj
jjyjj+ jj(Sj � I)yjj

�
�(1 +D)k�1

1� �(1 +D)k�1
jjyjj+ jj(Sj � I)yjj

� Djjyjj:
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Hence Qj(U) � Uj . The proof that each Qj is a contractive map with the same contraction

factor r as Q is very similar to that given for Q in the proof of Theorem 2.2 and is omitted.

Thus condition (C1) is satis�ed.

To complete the proof of part (a), note that U � fx 2 X : jj�Lxjj < 1g so Theorem 4.1

(A) applies. Then by Theorem 3.2, condition (C2) is satis�ed. If L is compact then Qn

converges to Q uniformly on U by Theorem 4.1 (B). Therefore Theorem 3.4 applies.2

We consider the case k = 2 so that Theorem 4.2 applies to the quadratic equation

y = x+ �B(x; x) (33)

where B is bilinear. We state Theorem 7 of [1] for comparison purposes.

Theorem 4.3 (Argyros) Consider the quadratic equations

z = y + Fn(z; z) (34)

where Fn : X �X ! X, n = 1; 2; : : : are bounded symmetric bilinear operators. If

(i) the sequence fFng converges to B uniformly as n!1,

(ii) for each n there exists zn, satisfying (34) and sup kznk < (2j�j � kBk)�1,

then the sequence fzng converges to a solution z of (33).

Observe that Argyros requires uniform convergence of the operators fFng to B, while our
Theorem 4.2 a) assumes only that B is compact in one variable in order to guarantee that

the �xed point solutions zn converge to the solution zs of (33).

Also note that Argyros' Theorem requires that the bilinear operators Fn be symmetric, while
this is not needed for Theorem 4.2 a). This fact is quite important for an operator B(x;w)

that is compact in only one variable, for if B is \symmetrized" using the formula

�B(x;w) := (1=2)(B(x;w) +B(w; x))

then the compactness in one variable is destroyed. These points should be kept in mind for

Example 5.1 below.

5 Applications to Integral Equations

In the �nal section of this paper, we employ our iterative scheme and our previous

results to obtain approximate solutions to the two classes of integral equations given in the

introduction. In both examples, we work in X = L2[a; b], �1 � a < b � 1. While

we have considered di�erent �nite dimensional subspaces of L2(IR) in our examples, we
have found that it is quite bene�cial to utilize the closed subspaces fVngn2ZZ � L2[a; b],

Vn � Vn+1, that form a multiresolution analysis (MRA) of L2[a; b] (see [4, 7] for a treatment
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of MRA's). The MRA gives rise to a so-called wavelet basis f nkg, where for �xed n, f nkg
forms an orthonormal basis for the space Wn, Vn+1 := Vn

L
Wn. For n; k 2 ZZ, f nkg forms

an orthonormal basis for L2[a; b]. For L2(IR), Daubechies [8] was the �rst to construct an
orthonormal basis f nkg generated from one compactly supported mother wavelet  . For

L2[a; b], �1 < a < b <1, similar constructions can be found in [5, 6, 13] among others.

It is desirable to use an orthonormal basis in the subsequent computations since each

iterative step involves solving a linear �nite dimensional system. In addition, the compact

support properties of the wavelet basis greatly reduce the number of numerical integrations

that must be performed when we project our operator into �nite dimensional subspaces.

Example 5.1 Consider the Chandrasekhar integral equation

1 = H(s) +
1

2
�sH(s)

Z 1

0

H(t)

s+ t
dt (35)

which arises in the theory of radiative transfer [3].

We consider solving (35) in L2[0; 1] for the function H(s). While this equation is generally

solved in C[0; 1], (see [1, 16]), it has been shown in [19] that an L2 solution to (35) is in fact
in C[0; 1]. If we put y(s) = 1 and de�ne B : L2[0; 1]� L2[0; 1] 7! L2[0; 1] by

B(G;H)(s) =
1

2
sG(s)

Z 1

0

H(t)

s+ t
dt (36)

then the Chandrasekhar equation (35) can be expressed in the form

y = x+ �B(x; x): (37)

To obtain a bound on jjBjj, note that

jjB(G;H)jj2 =
1

4

Z 1

0
(sG(s)

Z 1

0

H(t)

s+ t
dt)2ds

�
1

4

Z 1

0
jG(s)j2(

Z 1

0
(
s

s+ t
)2dt

Z 1

0
(H(t))2dt)ds

by the Cauchy-Schwarz inequality. Then

jjB(G;H)jj2 �
1

4
c2jjGjj2jjHjj2

where

c2 = sup
0�s�1

Z 1

0
(
s

s+ t
)2dt =

1

2

so

jjBjj �
1

2
p
2
:
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Note that the linear operator

B(G; �)(s) = sG(s)
Z 1

0

�

s+ t
dt

is compact for each G(s) 2 L2[0; 1]. Hence Theorem 4.2 (a) applies for appropriate � and U ,

and any orthonormal basis of L2[0; 1]. It is worthwhile to note that Theorem 4.1 (B) does

not apply, since the operator B is only compact in one variable. It is not clear that Theorem

4.3 of Argyros can be applied to this example since B is only compact in one variable.

This example is an illustration of and not a rationale for Theorem 4.2. Using more

information about equation (35) than is used here, it can be proven that (see [3]) (35) has

a solution for 0 � � � 1, while our results apply for j�j � 1p
2
. Our numerical experiments

indicate that this iterative scheme converges for 0 � � � 1, but we choose a � value below
that is justi�ed by Theorem 4.2(a).

In order to compute approximate solutions to (37), we use the iterative scheme similar

to (4):
Qn(x

k) = xk+1; k = 1; 2; : : : (38)

where Qn was de�ned by (32), and approximate the �xed point zn of (38). We then choose
larger and larger Vn spaces and repeat the iterative process. Finally, we appeal to Theorem

3.3 to conclude that the zn approach the true solution.
Suppose we wish to compute the �xed point zn of (38). Let fe1; : : : ; eNg be an orthonor-

mal basis for Vn, set y(t) = 1, and consider projecting (37) into Vn:

(Sn + �Bn
xk )x

k+1 = yn

where yn(t) =
PN

i=1 y
n
i ei(t) with y

n
i =< y; ei >, i = 1; : : : ; N . To obtain a matrix represen-

tation An for Bn
xk , we let

bkij =
1

2

Z 1

0

Z 1

0
ek(s)ei(s)ej(t)

s

s+ t
dtds; i; j; k = 1; : : : ; N (39)

so that the entries of An are given by:

apq =
NX
i=1

b
p
iqx

k
i ;

where

xk(t) =
NX
i=1

xki ei(t):

We start with x1 := y and then iterate by repeatedly solving the system

2
664
yn1
...

ynN

3
775 = (In + �An)

2
664
xk+11

...

xk+1N

3
775 ;
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where the n � n identity matrix In is the matrix representation of Sn. Note that the bkij's

must only be computed once in this scheme and that bkij is symmetric in i and k. In addition,

if the basis functions have compact support within [0; 1], then it is possible to a priori assign
certain bkij = 0. Certain wavelet bases have this property.

To illustrate the above scheme, we have chosen the �rst two bases to be N = 4 dimensional

subspaces while the third choice is an N = 5 dimensional subspace. We make no claim as

to which is the best choice { we provide these three bases for comparative purposes. Figure

1 below illustrates our approximate solutions.

(i) P3([0; 1]) - the space of polynomials of degree three or less spanned by the classical

Legendre polynomials.

(ii) S2
1([0; 1]) - the space of piecewise continuously di�erentiable quadratic polynomials with

possible breakpoints at 0; 1
2
; 1, spanned by orthonormalized B-splines. These splines

serve as a basis for a V1([0; 1]) space given in Chui and Quak [5].

(iii) S1
0([0; 1]) - the space of continuous linear polynomials with possible breakpoints at

0; 1
4
; 1
2
; 3
4
; 1, spanned by orthonormalized B-splines. These splines serve as a basis for a

V1([0; 1]) space given in [5].

Remark. The spaces (ii) and (iii) can be viewed as generated by scaling functions and these

functions are compactly supported. Wavelet analysis allows us to readily move to the next
larger space using the identity Vn+1 = Vn

L
Wn. As n grows, the support of both the scaling

functions and the wavelets shrink thus reducing the number of numerical integrations that

need to be computed.

The results of our computations are given in Figure 2 below. In each case, � = :1 and six

iterations were performed.

The exact solution to (35) is given in [16] and is of the form:

H(t) = exp

 
�
t

�

Z �=2

0

log(1� �s cot(s))

cos2(s) + t2 sin2(s)
ds

!
(40)

Rall [16] used a di�erent iterative procedure. He computed some values of his approximate

solution in a ten-dimensional subspace of C([0; 1]) and his computations used seven iterates.
For comparison purposes, we list his values with values from our approximate solutions in

Table 4 below.

The solution to Chandrashekhar's equation (35) is usually approximated in C[0; 1] rather
than L2[0; 1] (see [17, 1]). Theorem 4.2 is general enough to be applied to C[0; 1] since only a

Schauder basis is assumed. A wavelet basis for a dense subspace of C[0; 1] has been reported

by Wang [21], so that the bene�ts of wavelets can be retained if an approximate solution in
C[0; 1] is desired.
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1
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0 0.2 0.4 0.6 0.8
t

Figure 1: H(t) (solid) vs. the solution (dotted) from P3([0; 1]).

1

1.005
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1.015

1.02

1.025

1.03

1.035

0 0.2 0.4 0.6 0.8
t

Figure 2: H(t) (solid) vs. the solution (dotted) S2
1([0; 1]).
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0 0.2 0.4 0.6 0.8
t

Figure 3: H(t) (solid) vs. the solution (dotted) S2
0([0; 1]).

Table 4.

t Rall P3([0; 1]) S2
1([0; 1]) S1

0([0; 1])

0.0159199 1.00333256 1.00958383 1.00506878 1.00519491
0.0819844 1.01089700 1.02134388 1.01025220 1.00994962
0.1933143 1.01829896 1.03723329 1.01764377 1.01796209

0.3378733 1.02435469 1.05173649 1.02472538 1.02450330

0.5000000 1.02892234 1.06190891 1.02928548 1.02904480

0.6621267 1.03220522 1.06818221 1.03198365 1.03211930
0.8066857 1.03445865 1.07263226 1.03426463 1.03448647
0.9180156 1.03589121 1.07655348 1.03594109 1.03586278

0.9840801 1.03664375 1.07947299 1.03690293 1.03667950

Example 5.2 (Hammerstein) Solve for x(t) 2 L2[a; b]:

y(s) = x(s) + �
Z b

a
k(s; t)(x(t))2dt

Equation (5.2) can be expressed as a bilinear equation in L2[a; b] where

K(f1; f2)(s) =
Z b

a
k(s; t)f1(t)f2(t)dt

is a bilinear operator,

K : L2[a; b]� L2[a; b] 7! L2[a; b]:
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Using the Cauchy-Schwarz inequality, the map K can be shown to be bounded if

k�(s) = sup
a�t�b

jk(s; t)j 2 L2[a; b] (41)

The linear operator

K(f1; �)(s) =
Z b

a
k(s; t)f1(t)(�)dt

is compact for each f1(t) 2 L2[a; b] when (41) holds. Thus Theorem 4.2 (a) applies. Actually,

we can claim that Theorem 4.2 (b) applies, since K is actually compact (see [18]).

We have used the iterative scheme (29). This method is quite similar to that used in Example

5.1 only now each successive iteration takes place in a larger subspace. In the case when
X = L2(IR), it is quite convenient to employ the ladder of subspaces given in Daubechies
[7].

Example 5.3 Consider the Hammerstein integral equation

y(s) = x(s) + �

Z b

a
k(s; t1; t2; :::; tn)x(t1) � � � x(tn)dt1 � � � dtn (42)

As in Example 5.2, (42) can also be viewed as an n-linear equation in L2[a; b]

y = x+ �L(x; : : : ; x)

where the n-linear operator

L : L2[a; b]� L2[a; b] � � � � L2[a; b] 7! L2[a; b]

is de�ned by

L(f1; f2; :::; fn)(s) =
Z b

a
k(s; t1; t2; :::; tn)f1(t1)f2(t2):::fn(tn)dt1dt2:::dtn

It can be shown (see [20]) that L is in fact compact when the kernel function is in L2([a; b]n+1),

so Theorem 4.2 (b) and the iterative scheme (29) apply.

Acknowledgement. The authors wish to thank the anonymous referees for their construc-

tive comments. In particular we wish to thank one of the referees for remarks leading to
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