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Abstract

In [14], Walter and Shen use an Abel summation technique to construct a positive
scaling function Pr, 0 < r < 1, from an orthonormal scaling function φ that gener-
ates V0. A reproducing kernel can in turn be constructed using Pr. This kernel is
also positive, has unit integral, and approximations utilitizing it display no Gibbs’
phenomenon. These results were extended to scaling vectors and multiwavelets in
[12]. In both cases, orthogonality and compact support were lost in the construction
process.

In this paper we modify the approach given in [12] to construct compactly sup-
ported positive scaling vectors. By imposing certain conditions on the support and
the number of components of an existing orthonormal scaling vector Φ, we use ideas
from [2,9] to modify Φ and create a positive scaling vector on the interval.

While the mapping into V0 associated with this new positive scaling vector is not
a projection, the scaling vector does produce a Riesz basis for V0 and we conclude
the paper by illustrating that expansions of functions via positive scaling vectors
exhibit no Gibbs’ phenomenon.
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1 Introduction

Let φ be a compacted supported orthogonal scaling function generating a mul-
tiresolution analysis {Vk} for L2(IR). In [14], the authors show how to use this
φ to construct a new scaling function P that generates the same multiresolu-
tion analysis for L2(IR). Moreover, P (t) ≥ 0 for t ∈ IR. The application the
authors considered for this new function P was density estimation. They also
showed that approximations fm ∈ Vm to f ∈ L2(IR) where

fm(t) =
∫

s∈IR

Km(s, t)f(s)ds

where

Km(s, t) = 2m
∑

n∈ZZ

φ(2ms− n)φ(2mt− n)

exhibits no Gibbs’ phenomenon. While Km is not a projection of f into Vm,
fm may well be useful in some applications where Gibbs’ phenomenon is a
problem. The disadvantages of this construction is that orthogonality is lost
(although the authors gave a simple expression for the dual P ∗) and P is not
compactly supported.

The results of Walter and Shen [14] were generalized to the scaling vectors
Φ = (φ1, . . . , φA)T in [12]. Here the authors also showed that it was not nec-
essary to start with an orthogonal scaling vector supported on some interval
[0,M ] to construct the nonnegative scaling vector P .

While the orthogonality of a scaling vector is desirable in some cases, it is
impossible to insist that the scaling vector of length A > 1 be both orthog-
onal and nonnegative. As we will see in the sequel is it possible to modify
the construction and retain the compact support. Moreover, since many ap-
plications require the underlying space to be L2([a, b]) rather than L2(IR) it is
worthwhile to investigate extending the construction to the interval.

In this paper, we will take a continuous, compactly supported scaling vector
Φ and illustrate how to construct a compactly supported scaling vector P
that generates the same multiresolution analysis as Φ. The construction only
requires that at least one component φj of Φ is nonnegative on its support.
We then show how to construct the new scaling vector P by taking pj = φj

and forming p` from φ` and a linear combination of the integer translates of
φj.

We continue by discussing a method for modifying a given scaling vector Φ and
constructing a scaling vector P for the interval. This construction is motivated

2



by the work of Daubechies’ [2] and Meyer [9]. It is a goal of the construction
to produce a positive scaling vector, preserve the polynomial accuracy of the
original scaling vector, and to keep the number of edge functions as small as
possible. Our results are partial in that we only consider A = 2 and vectors
that satisfy certain support properties. With regards to the number of edge
functions in the construction, we found that only m − 1 edge functions were
needed to preserve polynomial accuracy m.

We consider also the question of Gibbs’ phenomenon for scaling vector ex-
pansions. The main result of this portion of this paper is to show that if Φ
is orthogonal or Φ has a biorthogonal dual that is compactly supported, then
the corresponding wavelet expansion exhibits Gibbs’ phenomenon on at least
one side of 0.

The outline of this paper is as follows. In the next section, we introduce ba-
sic definitions, examples, and results that are used throughout the sequel. In
Section 3, we give the construction for a scaling vector that is compactly sup-
ported. In the subsequent section we show how to take a given scaling vector
and use it to construct a scaling vector that generates a muliresolution analysis
for L2([0, 1]). We give examples of the constructions detailed in Section 3 and
Section 4. The final section contains our results involving wavelet expansions
and Gibbs’ phenomenon.

2 Notation, Definitions, and Prelimary Results

In this section we will state definitions, introduce notation, and present results
used throughout the sequel.

We begin with the concept of a scaling vector or set of multiscaling functions.
This idea was first introduced in [4,7]. We start with A functions, φ1, . . . , φA

and consider the space

V0 = < {φ1(· − k), . . . , φA(· − k)}k∈ZZ >.

It is convenient to store φ1, . . . , φA in a vector

Φ(t) =




φ1(t)

φ2(t)
...

φA(t)



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and define a multiresolution analysis in much the same manner as in [2]:

(M1) ∪n∈ZZVn = L2(IR).
(M2) ∩n∈ZZVn = {0}.
(M3)f ∈ Vn ↔ f(2−n·) ∈ V0, n ∈ ZZ.
(M4) f ∈ V0 → f(· − n) ∈ V0, n ∈ ZZ.
(M5) Φ generates a Reisz basis for V0.

In this case Φ satifies a matrix refinement equation:

Φ(t) =
∑

k

CkΦ(2t− k) (1)

where the Ck are A× A matrices.

We define the Fourier transform Φ̂ of Φ by the component-wise rule:

φ̂`(ω) =
∫

IR

φ`(t)e−iωtdt, ` = 1, . . . , A

and the A× A matrix

EΦ(ω) =
∑

k∈ZZ

Φ̂(ω + 2πk)Φ̂†(ω + 2πk) (2)

where † denotes the Hermitian conjugate. The matrix EΦ plays an important
role in analyzing scaling vectors. Indeed Geronimo, Hardin, and Massopust
introduced this matrix in [4] and showed that the nonsingularity of EΦ is
necessary and sufficient for the set in (M5) to form a Riesz basis for V0.

We will make the following assumptions about Φ and its components:

(A1) Each φ` is compactly supported and continuous,
(A2) There is a vector ~c = (c1, . . . , cA)T for which

A∑

`=1

∑

k∈ZZ

c`φ
`(t− k) = 1,

(A3)
∑

k∈ZZ φ`(t− k) > 0 for each ` ∈ ZZ such that c` 6= 0, and
(A4) c`

∫
IR φ` ≥ 0 for each ` = 1, . . . , A and if

∫
IR φ` = 0, then c` = 0.

It was shown by Theorem 3.1 in [12] that if Φ is a scaling vector satisfying
(M1)-(M5) and (A1)-(A2), a new scaling vector Φ̃ could be constructed that
generates the same multiresolution analysis as Φ and also satisfies (A3)-(A4).
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With regards to (A1), we will further assume that

supp(φ`) = [0, M`]

with M` ∈ ZZ for ` = 1, . . . , A.

We will denote by M the maximum value of M`:

M = Max{M1, . . . , MA}. (3)

We will say that Φ has polynomial accuracy m if there exist constants f `
nk such

that

tn =
A∑

`=1

∑

k∈ZZ

f `
nkφ

`(t− k) =
∑

k∈ZZ

fnk · Φ(t− k) (4)

for n = 0, . . . , m− 1 and

fnk = (f 1
nk, . . . , f

A
nk)

T (5)

We now give two examples of multiscaling functions that we will use through-
out the sequel.

Example 2.1 (Donovan,Geronimo,Hardin,Massopust) In [3], the au-
thors constructed a scaling vector with A = 2 that satisfies the four-term
matrix refinement equation

Φ(t) =
3∑

k=0

CkΦ(2t− k)

where C0 =




3/5 4
√

2/5

−√2/20 −3/10


, C1 =




3/5 0

9
√

2/20 1


, C2 =




0 0

9
√

2/20 −3/10


,

and C3 =




0 0

−√2/20 0


.

The scaling functions φ1, φ2 (shown in Figure 1) satisfy
(
φj(t− n), φ`(t−m)

)
=

δmnδj`, m,n ∈ ZZ, j, ` = 1, 2. They also have approximation order 2, are contin-
uous, symmetric, and compactly supported (supp(φ1) = [0, 2] and supp(φ2) =
[0, 1]). Note also that φ2(t) ≥ 0, t ∈ IR.

Our next example uses a scaling vector constructed by Plonka and Strela in
[11].
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Fig. 1. The scaling functions φ1, φ2 of Donovan, Geronimo, Hardin, and Massopust.

Example 2.2 (Plonka,Strela) Using a two-scale similarity transform in the
frequency domain, Plonka and Strela constructed the following scaling vector
Φ in [11]. It satisfies a three-term matrix refinement equation

Φ(t) =
2∑

k=0

CkΦ(2t− k)

where C0 = 1
20



−7 15

−4 10


, C1 = 1

20




10 0

0 20


, and C2 = 1

20



−7 −15

4 10


.

This scaling vector is not orthogonal, but it is compactly supported on [0, 2]
and (anti)symmetric with approximation order 3. Moreover, φ2 is nonnegative
on its support.

3 Positive Scaling Vectors with Compact Support

In this section we describe a procedure for constructing positive scaling vec-
tors with compact support. The idea is to start with a scaling vector Φ that
satisfies (A1)-(A2) from the previous section and with the addition require-
ment that at least one of components φj of Φ is nonnegative.

Theorem 3.1 Suppose a scaling vector Φ = (φ1, φ2, . . . , φA)T satisfies (A1)-
(A2) and for some j = 1, . . . , A, φj(x) ≥ 0 for all x ∈ IR. Suppose there exist
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Fig. 2. The Φ of Plonka and Strela.

finite index sets Λi and constants cik for i 6= j such that the function

φ̃i(t) := φi(t) +
∑

k∈Λi

cikφ
j(t− k) ≥ 0 (6)

for all x ∈ IR. Then the nonnegative vector

Φ̃ = (φ̃1, . . . , φ̃j−1, φj, φ̃j+1, . . . , φ̃A)T

is a scaling vector that satisfies (A1)-(A4) and generates the same space V0 as
Φ.

Proof. We must show that Φ̃ satisfies a matrix refinement equation in addition
to (A1)-(A2). By Theorem 3.1 in [12], we can then conclude Φ̃ also satisfies
(A3)-(A4).

(A1) follows immediately from the support and continuity properties of Φ. To
prove (A2) we start by rewriting (6) as

φi(t) = φ̃i(t)− ∑

k∈Λi

cikφ
j(t− k)

and substitute this into the original partition of unity:

∑

n∈ZZ





∑

i6=j

ci


φ̃i(t− n)− ∑

k∈Λi

cikφ
j(t− k − n)


 + cjφ

j(t− n)



 = 1
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so that

∑

n∈ZZ

∑

i 6=j

ciφ̃
i(t− n)−∑

i 6=j

∑

k∈Λi

cicik

∑

n∈ZZ

φj(t− k − n) +
∑

n∈ZZ

cjφ
j(t− n) = 1.

Substituting m = n + k into the second expression gives:

∑

n∈ZZ

∑

i 6=j

ciφ̃
i(t− n)−∑

i 6=j

∑

k∈Λi

cicik

∑

m∈ZZ

φj(t−m) +
∑

n∈ZZ

cjφ
j(t− n) = 1

or

∑

n∈ZZ

∑

i 6=j

ciφ̃
i(t− n) +

∑

n∈ZZ



cj −

∑

i6=j

∑

k∈Λi

cicik



 φj(t− n) = 1.

Since φ̃j = φj, we get the partition of unity

A∑

i=1

∑

n∈ZZ

diφ̃
i(t− n) = 1

where di = ci for i 6= j and

dj = cj −
∑

i 6=j

∑

k∈Λi

cicik.

To see that Φ̃ forms a Riesz basis for V0, assume without loss of generality
that j = A and note that

ˆ̃Φ(ω) = B(ω)Φ̂(ω)

where B(ω) is an A× A upper triangular matrix defined by

B(ω) =




IA−1 ~m

~0 1




where IA−1 is the A − 1 × A − 1 identity matrix, ~0 is a A − 1 row vector of
0’s, and ~m is an A− 1 column vector whose components mi, i = 1, . . . , A− 1,
are given by

mi =
∑

k∈Λi

cike
−ikω,
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We compute the A× A matrix

EΦ̃(ω) =
∑

k∈ZZ

ˆ̃Φ(ω + 2πk) ˆ̃Φ
†
(ω + 2πk)

=
∑

k∈ZZ

B(ω + 2πk)Φ̂(ω + 2πk)Φ̂†(ω + 2πk)B†(ω + 2πk)

= B(ω)


∑

k∈ZZ

Φ̂(ω + 2πk)Φ̂†(ω + 2πk)


 B†(ω)

= B(ω)EΦ(ω)B†(ω)

By definition B(ω) is nonsingular, so that B†(ω) is also nonsingular. Since
Φ forms a Riesz basis for V0, we have that EΦ(ω) is also nonsingular. Thus
EΦ̃(ω) is nonsingular and thus by virtue of Theorem 3.2 in [4], Φ̃ generates a
Riesz basis for V0.

We must finally show that Φ̃ satisfies a matrix refinement equation. Let

B =




IA−1 ~c

~0 1




where IA−1 and ~0 are as defined above and the components ci, i = 1, . . . , A−1
of ~c are given by

ci =
∑

k∈Λi

cik.

Then

Φ̃(t) = BΦ(t)

= B
∑

k

CkΦ(2t− k)

=
∑

k

BCkΦ(2t− k).

But B is nonsingular so that we can write

Φ(2t− k) = B−1Φ̃(2t− k)

and thus observe that the refine equation coefficients for Φ̃ are

C̃k = BCkB
−1 2.
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Remark. A sufficient condition on φj for the existence of these index sets is
φj > 0 on an interval J , where J̄ = [a, b] and b− a > 1.

We conclude by giving two examples that illustrate the results of Theorem 3.1.
The first example involves the scaling vector of Donovan, Geronimo, Hardin,
and Massopust [3] while the second utilizes the vector constructed by Plonka
and Strela [11].

Example 3.2 We consider the multiscaling functions given in Example 2.1.
Since φ2 ≥ 0 we take it to be φ̃2. We can then create φ̃1 by taking Λ1 = {0, 1}
with c1k = 1, k = 0, 1:

φ̃1(t) = φ1(t) +
(
φ2(t) + φ2(t− 1)

)

φ̃1(t) is pictured below in Figure 3:

Fig. 3. The positive scaling function φ̃1.

Our next example uses a scaling vector constructed by Plonka and Strela
described in Example 2.2.

Example 3.3 We take φ̃2(t) = φ2(t) and take α = 1.6. Then α > |min[0,2](φ
1(t)+

φ2(t))|. We then form

φ̃1(t) = φ1(t) + αφ2(t)

so that φ̃1(t) ≥ 0 for t ∈ IR. φ̃1(t) is pictured below.
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Fig. 4. φ̃1.

4 Positive Scaling Vectors on [0, 1]

The construction of scaling vectors on the interval has been addressed in
[1], [6], and [8]. In these cases the authors constructed scaling vectors on
the interval from scratch. It is our intent to show how to modify a given
scaling vector that generates a multiresolution analysis for L2(IR) so that it
generates a multiresolution analysis for L2([0, 1]). Moreover, the components
of the new vector will be nonnegative. The disadvantages to this scheme are
that orthogonality is lost and that the new scaling vector is not a projection
into V0. The advantage is that multiwavelet expansions of f in Vm exhibit
no Gibbs’ phenomenon. In particular cases, our procedure requires fewer edge
functions than in the single scaling function constructions of Daubechies [2]
and Meyer [9].

Our task then is to modify an existing scaling vector and create a nonnegative
scaling vector that generates a multiresolution analysis for L2([0, 1]) that

(1) preserves the polynomial accuracy of the original scaling vector.
(2) exhibits no Gibbs’ phenomemon
(3) avoids the creation of “too many” edge functions.

Unfortunately we only have results in particular cases. It is our hope that
these results might be extended to more general cases in the future.

We begin with a multiresolution analysis for L2(IR) generated by Φ = (φ1, φ2, . . . , φA)T

and we will also assume our scaling vector has polynomial accuracy m with
fnk given by (5).
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Finally, assume that the set S of non-zero functions

S = {φ̄`(· − k), k ∈ ZZ} (7)

defined by

φ̄`
k(t) = φ`(t− k)|[0,∞)

are linearly independent and let n(S) denote the number of functions in S.

We will work only on the left edge [0,∞) in constructing V0[0,∞). We begin
with φ`(t− k), k ≤ 0 and then add left edge functions to preserve polynomial
accuracy.

Define the left edge functions φL,n by

φL,n(t) =
A∑

`=1

0∑

k=1−M`

f `
nkφ

`(t− k)|[0,∞) =
A∑

`=1

0∑

k=1−M`

f `
nkφ̄

`
k(t) (8)

for n = 0, . . . , m − 1. Observe that the sum above is finite since the φ` are
compactly supported and note that by (4) φL,n(t) = tn on [0, 1]. Right edge
functions can be defined in an analogous manner.

Our next proposition shows that the left edge functions (and in an analogous
manner the right edge functions) satisfy a matrix refinement equation.

Proposition 4.1 Suppose that Φ is a scaling vector satisfying (A1)-(A2) with
polynomial accuracy m with f `

nk given in (4). Further assume that the set S
defined in (7) is linearly independent. Then the set of edge functions φL,n,
n = 0, . . . , m− 1 satisfy a matrix refinement equation.

Proof. Recall Φ supported on [0,M ] satisfies a matrix refinement equation

Φ(t) =
M∑

j=0

CjΦ(2t− j)

or

Φ(t− k) =
M∑

j=0

CjΦ(2(t− k)− j)

=
2k+M∑

j=2k

Cj−2kΦ(2t− j)

=
∑

j∈ZZ

Cj−2kΦ(2t− j)
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where Ct = 0 if t /∈ {0, . . . , M − 1}.
Note that for each n = 0, . . . , m− 1,

φL,n(t)− 2−nφL,n(2t) =
0∑

k=1−M

fnkΦ(t− k)− 2−n
0∑

k=1−M

fnkΦ(2t− k)

=
0∑

k=1−M

fnk

∑

j∈ZZ

Cj−2kΦ(2t− j)− 2−n
0∑

k=1−M

fnkΦ(2t− k)

=
∑

j∈ZZ

0∑

k=1−M

fnkCj−2kΦ(2t− j)− 2−n
0∑

k=1−M

fnkΦ(2t− k)

=
M∑

j=2−2M

qnjΦ(2t− j)

on [0,∞) where

qnj =





∑0
k=1−M fnkCj−2k − 2−nfnj ifj ∈ {1−M, . . . , 0}

∑0
k=1−M fnkCj−2k ifj ∈ {2− 2M, . . . ,−M} ∪ {1, . . . , M}

Recall that φL,n(t) = 2−nφL,n(2t) = tn on [0, 1
2
] and that the functions φ`(2t−j)

are linearly independent so

qnj = 0

for j = 2− 2M, . . . , 0. Thus

φL,n(t) = 2−nφL,n(2t) +
M∑

j=1

qnjΦ(2t− j)

on [0,∞). This is the desired dilation equation for the nth edge function φL,n.
2

Refinement equations for the right edge functions are derived in a similar
manner.

Example 4.2 We return to the scaling vector of Strela and Plonka [11] in-
troduced in Example 3.3. This scaling vector has approximation order 3 with

f0,0 = (0, 1), f1,0 = (−1

6
, 1).

and is supported on [0, 2]. The refinement equation matrices C0, C1, and C2
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are given in Example 3.3. We calculate q0,1 and q0,2 as

q0,1 =
0∑

k=1−2

f0,kC1−2k = (0, 1)C1 = (0, 1)

q0,2 =
0∑

k=1−2

f0,kC2−2k = (0, 1)C2 = (
1

5
,
1

2
).

The dilation equation for φL,0 is

φL,0(t) = φL,0(2t) + φ2(2t− 1) +
1

5
φ1(2t− 2) +

1

2
φ2(2t− 2)

and the dilation equation for φL,1 is

φL,1(t) = 2−1φL,1(2t)− 1

12
φ1(2t− 1) + φ2(2t− 1) +

31

120
φ1(2t− 2) +

75

120
φ2(2t− 2).

In order to construct a scaling vector for V0([0,∞)), we need for our edge
functions not only to satisfy a matrix refinement equation but also to join
with {Φ(· − k)}k≥0 and form a Riesz basis for V0([0,∞]). We will next show
that the set of edge functions we constructed above does indeed preserve the
Riesz basis property. We begin with the following lemma.

Lemma 4.3 Let {ek} be a Riesz basis of some space H. If T : H → K is
linear and invertible, with T and T−1 both continuous, then {Tek} is also a
Riesz basis of K. In particular, if H ⊂ K, T is injective and T (ek) = ek for
all but a finite number of the ek, then T and T−1 are continuous.

We are now ready to state and prove our next result.

Theorem 4.4 Let Φ = (φ1, . . . , φA)T be a scaling vector that satisfies (A1)
and generates a multiresolution analysis for L2(IR). For some index set B, let
{Li}i∈B be a finite set of edge functions with supp(Li) = [0, δi] and assume
that {Li, φ

`(· − k)}i,`,k≥0 is a linearly independent set. Then {Li(2
j·), φ`(2j ·

−k)}i,`,k≥0 is a Riesz basis of Vj, where L2([0,∞)) = ∪jVj.

Proof. Without loss of generality set j = 0 and let C be the set of integer
indices for which supp(Li) ∩ supp(φ`(· − k)) 6= ∅ for all i ∈ B, `, k ≥ 0. For
ease of notation, denote by {fn}n∈C those {φ`(· − k)} corresponding to C and
for integer index set D let {gm}m∈D denote the other {φ`(· − k)}. For ease
of presentation, assume that B,C, and D are mutually disjoint and note that
ZZ = B ∪C ∪D. Now since {Li, fn} is linearly independent and a finite set, it
must be a Riesz basis of its span. We then use the Gram-Schmidt process to
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orthogonalize it and thus obtain {L̃i, f̃n}. In the process, we begin with the
Li and then move on to the {fn}. This ensures that supp(L̃i) ⊂ [0, max(δj)],
whence

∫
L̃ign = 0 for all i, n.

Since there are only a finite number of fn functions, {f̃n, gm} is still a Riesz
basis of its span by the Lemma 4.3. Hence there exist A0, B0 > 0 such that

A0||{dk}||22 ≤ || ∑

n∈C

dnf̃n +
∑

m∈D

dmgm||22 ≤ B0||{dk}||22, ∀{dk} ∈ `2(ZZ).

Assuming without loss of generality that A0 ≤ 1, we use the line above,
||L̃i|| = 1, the orthogonality of the {L̃i, f̃n}, and the disjoint support of the L̃i

and gn to see that

A0||{dk}||22 = A0

[∑

i∈B

d2
i +

∑

n∈C

d2
n +

∑

m∈D

d2
m

]

≤∑

i∈B

d2
i + || ∑

n∈C

dnf̃n +
∑

m∈D

dmgm||22

=
∫ ∑

i∈B

(diL̃i)
2 +

∫ ∑

n∈C

(dnf̃n)2 +
∫ ∑

m∈D

(dmgm)2 + 2
∫ ∑

n∈C,m∈D

dndmf̃ngm

=
∫

(
∑

i∈B,n∈C,m∈D

diL̃i + dnf̃n + dmgm)2

= ||∑
i∈B

diL̃i +
∑

n∈C

dnf̃n +
∑

m∈D

dmgm||22

A similar proof shows that

||∑
i∈B

diL̃i +
∑

n∈C

dnf̃n +
∑

m∈D

dmgm||22 ≤ B0||{dk}||22,

so {L̃i, f̃n, gm} is a Riesz basis of its span. Finally, by the Lemma 4.3 above,
{Li, fn, gm} is a Riesz basis of V0. 2

We will now show that for some special cases, we need fewer edge functions
than in other constructions. More precisely, when A = 2 and either n(S) = 3,
m = 2, or n(S) = 4, m = 3, then we only need n(S)−A = m−1 edge functions
to preserve polynomial accuracy. The monomial tm−1 can be reproduced from
the original φ`(t− k) for k ≥ 0 and φL,n for n = 0, . . . , m− 2. The number of
edge functions needed is smaller than the n(S) = m needed in Daubechies [2]
construction and the same as Meyer’s [9] construction. In both of these cases,
the number of scaling functions is A = 1. To write tm−1 in terms of φ`(t− k),
k ≥ 0 and φL,n, n = 0, . . . , m− 2 we must find constants {αj} for which

m−2∑

j=0

αjφL,j(t) +
2∑

j=1

αj+m−2φ
j(t) = tm−1
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on [0, 1].

Rewriting this in terms of linearly independent φ̄`
k and using (8) we have

m−2∑

j=0

αj




2∑

`=1

0∑

k=1−M`

f `
j,kφ̄

`
k


 +

2∑

`=1

α`+m−2φ̄
`
0 =

2∑

`=1

0∑

k=1−M`

f `
m−1,kφ̄

`
k (9)

on [0, 1].

To determine when these systems have solutions, we need the following well-
known lemma (see for example [5]).

Lemma 4.5 The constants {f `
j,k} satisfy the recurrance relation

f `
j,k+1 =

j∑

i=0




j

i


 f `

i,k

for ` = 1, . . . , A and j = 0, . . . ,m− 1.

Remark. In particular, note that f `
0,k = f `

0,0 for ` = 1, . . . , A and k ∈ ZZ and
f `

1,k = f `
1,k+1 − f `

0,0 for ` = 1, . . . , A. Now for A = 2, we consider the following
three cases:

Case I. n(S) = 3, m = 2. In this case, we can assume without loss of generality
that supp(φ1) = [0, 2] and supp(φ2) = [0, 1]. Using the linear independence of
the translates of φ`(· − k), the system (9) becomes in matrix form:




f 1
0,0 1 0

f 2
0,0 0 1

f 1
0,−1 0 0



· α =




f 1
1,0

f 2
1,0

f 1
1,−1




(10)

Case II. n(S) = 4, m = 3, supp(φ1) = supp(φ1) = [0, 2]. The system (9)
becomes in matrix form:




f0,0 f1,0 I2

f0,−1 f1,−1 02


 · α =




f2,0

f2,−1


 (11)

where I2 is the 2 × 2 identity matrix, 02 is the 2 × 2 zero matrix, and α =
(α0, . . . , αm−1)

T .

Case III. n(S) = 4, m = 3, supp(φ1) = [0, 3] and supp(φ1) = [0, 1]. The
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system (9) becomes in matrix form:




f0,0 f1,0 1 0

f 1
0,0 f 1

1,−2 0 0

f 2
0,0 f 1

1,−1 0 0



· α =




f2,0

f 1
2,−2

f 2
2,−1




(12)

We have the following result for scaling vectors of length A = 2 whose com-
ponents have short support.

Proposition 4.6 There exists unique solutions to (10) and (12) and if the
vectors f0,0 and f1,0 are linearly independent, then there exists a unique solution
to (11). Thus in these cases, only m− 1 edge functions are needed to produce
polynomials of degree m.

Proof.

Case I. Clearly the top two rows of the 3 × 3 matrix in (10) are linearly
independent and from the support properties of φ1, φ2, we have

1 = φL,0(0) =
2∑

`=1

0∑

k=−1

f `
0,kφ̄

`
k(0) = f 1

0,−1φ̄
1
−1(0)

so that f 1
0,−1 6= 0 and the 3× 3 matrix in (10) must be nonsingular so that the

system has a unique solution.

Case III. Clearly the top two rows of the 4 × 4 matrix in (12) are linearly
independent. Thus in order for the matrix to be nonsingular, we must have
f 1

1,−1 6= f 1
1,−2. Using the remark following Lemma 4.5, we see that

f 1
1,−2 = f 1

1,−1 + f 1
0,0

so that the nonsingularity of the matrix rests upon f 1
0,0 6= 0. But if f 1

0,0 = 0,
then

1 = f 2
0,0

∑

k∈ZZ

φ2(t− k).

But recall that φ2(t) is supported only on [0, 1] and is continuous so that it
must be the case that f 1

0,0 6= 0.

Case II. Using the remark following Lemma 4.5, we see that f1,−1 = f1,0− f0,0.
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Certainly if f0,0 and f1,0 are linearly independent then the 4× 4 matrix in (11)
is nonsingular and the system thus has a unique solution. 2

Remark. Whether the vectors f0,0 and f1,0 (given the regularity conditions
imposed on Φ) are always linearly independent seems to be an open question.

We next return to the example of the scaling vector of Plonka and Strela [11]
introduced in Section 2.

Example 4.7 Note that from Example 4.2 that m = 3 and f0,0 = (1, 0)T ,
f1,0 = (1

6
, 1)T are linearly independent so that by Proposition 4.6 Case II, we

know that we need only construct two edge functions φL,0 and φL,1 in order to
reproduce quadratics in V0([0,∞)). Using (8), we find that

φL,0(t) = φ2(t) + φ2(t + 1)|t≥0

and

φL,1(t) = −1

6
φ1(t)− 1

6
φ1(t + 1) + φ2(t)|t≥0.

The two edge functions are pictured below.

Fig. 5. The edge functions φL,0 and φL,1.

Our next example utilizes the scaling vector of Donovan, Geronimo, Hardin,
and Massopust [3] from Example 3.2.

Example 4.8 We return to the scaling vector of Example 3.2. Note that m =
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2 and it is known that f0,0 = (1,
√

2)T . Thus by (8), we see that

φL,0(t) = φ1(t) + φ1(t + 1) +
√

2φ2(t)|t≥0

The edge function is shown below.

Fig. 6. The edge function φL,0.

We now continue with a discussion on how to construct a scaling vector
for L2([0, 1]) for the cases listed above. We assume that the edge functions
φL,0, . . . , φL,m−2, and φR,0, . . . , φR,m−2 have been constructed. Then for M de-
fined by (3), we select a resolution level j0 so that 2j0 ≥ 2M . This ensures
that the support of the edge functions do not intersect. Start the basis for
Vj0([0, 1]) by considering those functions φ`(2j0t − k), ` = 1, 2, k ∈ ZZ whose
support is contained in [0, 1]. If s = M1 + M2, then there are 2j0+1 − s + 2
interior functions. We then add the dilated versions of the edge functions
φL,0(2

j0t), . . . , φL,m−2(2
j0t) and φR,0(2

j0t), . . . , φR,m−2(2
j0t) and take Vj0([0, 1])

to be the closed linear span of these functions. Note that the dimension of
Vj0([0, 1]) is 2j0+1 + 2m − s. We can define spaces Vn([0, 1]) at different res-
olutions in the standard manner. Note that the dimension of Vn([0, 1]) is
2n+1 +2m− s. We conclude this section by constructing multiwavelets for the
scaling vector of Plonka and Strela given in Example 3.3. Other multiwavelets
for those scaling vectors falling into Cases I, II, or III can be constructed
analogously.

Example 4.9 Define the wavelet space

Wj0([0, 1]) = Vj0+1([0, 1])ª Vj0([0, 1])
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Recall that m = 3 and s = 4 so that the dimension of Wj0([0, 1]) is 2j0+2 +2−
(2j0+1 + 2) = 2j0+1. Since supp(ψ1) = supp(ψ2) = [0, 3], we see that we need
interior basis elements

ψ`(2j0t− k)

where ` = 1, 2 and k = 0, . . . , 2j0 − 3. We thus need

2j0+1 − 2(2j0 − 2) = 4

edge functions. We describe how to construct the two left edge functions ψL,0(t)
and ψL,1(t). The construction of the right edge functions follows in a similar
manner.

For simplicity, let gi(t), i = 1, . . . , 8 denote the functions

φL,0(2t), φL,1(2t), φ
`(2t− k)

` = 1, 2 and k = 0, 1, 2 and fj(t), j = 1, . . . , 6 denote the functions

φL,0(t), φL,1(t), φ
`(t− k)

` = 1, 2 and k = 0, 1. We then seek constants βm
k , k = 1, . . . , 8, m = 0, 1 such

that

ψL,m(t) =
8∑

k=1

βm
k gk(t)

with < ψL,m, fj >= 0 for m = 0, 1 and j = 1, . . . , 6. So we need two linearly
independent solutions of

A · βm = 0

where β = (βm
1 , . . . , βm

8 )T and A is the 6 × 8 matrix with the j, k entry <
gk, fj >. In the figures below, we graph ψ1(t), ψ2(t) as well as one possible
choice for ψL,0(t) and ψL,1(t).

5 Gibbs’ Phenomenon for Positive Multiscaling Functions

We conclude this paper with a discussion of some results on Gibbs’ phe-
nomenon for scaling vectors in L2(IR). In [14] the authors used a reproduc-
ing kernel to avoid Gibbs’ phenomenon in wavelet expansions of functions in
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Fig. 7. The multiwavelets ψ1(t) and ψ2(t).

Fig. 8. The left edge functions ψL,0 and ψL,1.

L2(IR). The kernel and the results were generalized to the case of scaling vec-
tors and multiwavelets in [12]. In this section, we prove theorems demonstrat-
ing that Gibbs’ phenomenon is a problem for many multiresolution analyses
and we also sharpen our previous result for an important special case.

We classify multiresolution analyses into three categories:

(1) Those with orthonormal bases. In this case we can write

L2(IR) = Vk ⊕ (⊕`≥kW`)
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where the direct sums are orthogonal, and the corresponding orthogonal
projections Pk are defined by

Pk




A∑

i=1

∑

j∈ZZ

αi
kjφ

i
kj +

∑

`≥k

A∑

i=1

∑

j∈ZZ

βi
`jψ

i
`j


 =

∑

ij

αi
kjφ

i
kj (13)

where φi
kj(t) = 2−k/2φi(2kt− j) for i = 1, . . . , A, k, j ∈ ZZ.

(2) Those with semi-orthogonal bases. In this case the translates of the
scaling function(s) are not orthogonal, but we can still write

L2(IR) = Vk ⊕ (⊕`≥kW`)

where the direct sums are orthogonal, and the corresponding orthogonal
projections Pk are defined as in (13).

(3) Those with non-orthogonal biorthogonal bases. In this case the Vj

and Wj spaces are non-orthogonal and

L2(IR) = Vk

⊕

⊕

`≥k

W`




where the direct sums
⊕

are not orthogonal, and the corresponding pro-
jections Pk defined as in (13) are not orthogonal. In this case, there
is a dual multiresolution analysis with scaling vector Φ∗ such that <
φi

kj, φ
∗`
mn >= δi`δkmδjn, k, j, m, n ∈ ZZ, i, ` = 1, . . . , A.

Here is a precise definition of Gibbs’ phenomenon.

Definition 5.1 Let f : IR → IR be a square integrable bounded function with a
jump discontinuity at 0: the limits limx→0+ f(x) = f(0+) and limx→0− f(x) =
f(0−) exist and are different. Without loss of generality we assume f(0+) >
f(0−). Suppose we have a multiresolution analysis of L2(IR) with multires-
olution spaces (Vj) generated by a scaling vector. We say a sequence of op-
erators (Lj), Lj : L2(IR) → Vj is admissible if limj→∞ Lj(f) = f in the
L2 sense, for all f ∈ L2(IR). We say that a wavelet expansion of f with
respect to a scaling vector and an admissible sequence (Lj) shows a Gibbs’
phenomenon at 0 if there is a positive sequence (xm) with limm→∞ xm = 0
and limm→∞ Lm(xm) > f(0+), or if there is a negative sequence (tm) with
limm→∞ tm = 0 and limm→∞ Lm(tm) < f(0−).

Observe that we do not require the maps Lj to be orthogonal projections
since many interesting MRA’s are built from Riesz or biorthogonal bases,
rather than orthogonal bases. Moreover, we shall see that we can avoid Gibbs’
by taking an admissible sequence of operators that are not even projections.
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The definition is otherwise quite standard.

Our main result is to show that nearly all interesting scaling vectors generating
multiresolution analyses will suffer from Gibbs’ phenomenon. More precisely,
we prove the theorem below.

Theorem 5.2 Let Φ = (φ1, . . . , φA)T be a scaling vector satisfying (A1) with
approximation order at least 2. If the multiresolution analysis is orthogonal
or Φ has a dual biorthogonal basis Φ∗ that is compactly supported, then the
corresponding wavelet expansion shows a Gibbs’ phenomenon at least one side
of 0.

To prove this result, we modify and generalize Shim and Volkmer’s [13] ap-
proach for the single scaling function orthonormal case in two directions: to
include biorthogonal bases and to include multiple scaling functions. We are
also able to replace a pair of rather technical derivative and decay hypotheses
in [13] with the hypotheses on compact support and approximation order. We
now state their main result from [13].

Theorem 5.3 (Shim,Volkmer) Let φ be a continuous scaling function gen-
erating an orthonormal multiresolution analysis that is differentiable at a dyadic
number with nonvanishing derivative there, and that satisfies

|φ(t)| ≤ K(1 + |t|)−βfor t ∈ IR

with constants K > 0 and β > 3. Then the corresponding wavelet expansion
shows a Gibbs phenomenon at one side of 0.

Before we present the proof to Theorem 5.2, we first introduce some notation
and state and prove two lemmas.

Let Qm denote the projection map onto the space Vm defined above in (13).

Define the reproducing kernel q(s, t) by

q(s, t) =
A∑

i=1

∑

j∈ZZ

φi(s− j)φ∗i(t− j) (14)

and qm by qm(s, t) = 2mq(2ms, 2mt), where (φ∗i) is the biorthogonal basis.
Observe that

(Q0f)(s) =
A∑

i=1

∑

j∈ZZ

〈
f, φ∗i(· − j)

〉
φi(s− j) =

∫

IR

f(t)q(s, t)dt
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∀f ∈ L2(IR).

Finally, let H denote the Heaviside function and define function r by

r = H −Q0H

Lemma 5.4 The coefficients ci in (A2) satisfy

ci =
∫

IR

φ∗i(t)dt

and for m ∈ ZZ,

∫

IR

qm(s, t)dt = 1.

Proof. First observe that from the biorthogonality and (A2), we have

∫

IR

φ∗i(t)dx =
∫

IR

φ∗i(t)
A∑

`=1

∑

k∈ZZ

c`φ
`(t− k)dt = ci

The second result follows from integrating (14) with respect to t and applying
our formula for ci and (A2). 2

Lemma 5.5 Let Φ = (φ1, . . . , φA)T be a compactly supported, continuous scal-
ing vector with approximation order at least 2 generating a multiresolution
analysis for L2(IR). If the multiresolution analysis is orthogonal or Φ has a
dual biorthogonal basis Φ∗ that is compactly supported then the following are
true:

(1) Q0H = H − r is continuous,
(2) r(t) is compactly supported and continuous, except for a jump disconti-

nuity at 0.
(3) r ∈ ⊕

j≥0 W ∗
j

(4)
∫
IR tr(t)dt = 0.

Proof.

1. First note that (Q0H)(s) =
∫
IR H(t)q(s, t)dt =

∑
n,` φ`(s− n)dn,` where

dn,` =

∞∫

0

φ∗`(t− n)dt−
0∫

−∞
φ∗`(t− n)dt.
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Each φ`(· − n) is continuous and compactly supported, so Q0H is continuous.

2. r is continuous except for a jump discontinuity at 0. This follows from Part
1 and the fact that r = H−Q0H. Thus it suffices to show that r has compact
support. To this end, observe that for t ≥ 0, Lemma 5.4 tells us that

r(t) = 1−
∫

IR

q(t, y)H(y)dy

= 2

0∫

−∞
q(t, y)dy

Similarly for t < 0, r(t) = −2
∫∞
0 q(t, y)dy.

Now by the compact support of the φ` and φ∗`, for t > M , where M is given
by (3) we have

r(t) = 2
A∑

`=1

∑

n≥0

φ`(t− n)

0∫

−∞
φ∗`(y − n)dy = 0.

Let M∗ be defined by (3) for the dual scaling vector Φ∗. Then for t < −M∗−M

r(t) = 2
A∑

`=1

∑

n≤−M

φ`(t− n)

∞∫

0

φ∗`(y − n)dy = 0,

whence r(t) has compact support.

3. Next, for arbitrary j = 1, . . . , A and k ∈ ZZ, observe that

∫

IR

r(t)φ∗j(t− k)dt =
∫

IR

H(t)φ∗j(t− k)dx−
∫

IR

(Q0H)(t)φ∗j(t− k)dt

=
∫

IR

H(t)φ∗j(t− k)dt−
∫

IR

∫

IR

(H(y)q(t, y)dy)φ∗j(t− k)dt

which can be expressed as

=
∫

IR

H(t)φ∗j(t− k)dt−
∫

IR

∫

IR

H(y)
A∑

m=1

∑

n∈ZZ

[φm(t− n)φ∗m(y − n)] φ∗j(t− k)dydt

=
∫

IR

H(t)φ∗j(t− k)dt−
∫

IR

H(y)
A∑

m=1

∑

n∈ZZ

(
∫

IR

φm(t− n)φ∗j(t− k)dt)φ∗m(y − n)dy
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=
∫

IR

H(t)φ∗j(t− k)dt−
∫

IR

H(y) · φ∗j(y − k)dy

so r ⊥ Φ∗
jk j = 1, . . . , A and k ∈ ZZ. Writing L2(IR) = V ∗

0

⊕ (⊕
k≥0 W ∗

k

)
we

must have r ∈ ⊕
k≥0 W ∗

k .

4. Part 3 tells us that r =
∑

`≥0 αi,`jψ
∗
i,`j where the ψ∗i,`j ∈ W ∗

` are the mul-
tiwavelets of the dual basis. Since Φ has approximation order at least 2,
t =

∑
n,` βn`φ

`(t− n) for some (βn`) so

∫

IR

tr(t)dt =
∫

IR





∑

n,`

βn`φ
`(· − n)





{∑
αl

ijψ
`
ij

}
= 0

since V0 ⊥ W ∗
j for each j ≥ 0, j ∈ ZZ. 2

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. We first claim that r(t1) < 0 for some t1 > 0 or
r(t2) > 0 for some t2 < 0. For otherwise

∫
IR tr(t)dt = 0 would force r(t) = 0

almost everywhere. This is impossible by Part 2 of Lemma 5.5.

Now consider the case r(t1) < 0 for some t1 > 0. Then r(t1) = 1−∫
IR q(t1, y)H(y)dy <

0 implies that

∫

IR

q(t1, y)H(y)dy > 1. (15)

We now show there must be a Gibbs’ phenomenon for the Haar wavelet

h(t) =





1 if 0 ≤ t ≤ 1

−1 if −1 ≤ t < 0

Clearly limm→∞ t12
−m = 0, but

lim
m→∞(Qmh)(t12

−m) = lim
m→∞

∫

IR

2mq(t1, 2
my)h(y)dy

= lim
m→∞

1∫

0

2mq(t1, 2
my)dy −

0∫

−1

2mq(t1, 2
my)dy

= lim
m→∞

2m∫

0

q(t1, t)dt−
0∫

−2m

q(t1, t)dt
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=

∞∫

−∞
q(t1, t)H(t)dt > 1

by (15). Thus h exhibits Gibbs phenomenon at 0. The case r(t2) > 0 for some
t2 < 0 is similar. 2

We conclude this section by showing that we can avoid Gibbs by using a special
reproducing kernel. Of course, the reproducing kernel here corresponds to map
into Vm that is not a projection. Note that in the theorem below the compact
support and positivity together allow a improved statement over our previous
result (Proposition 3.7 of [12]) and that of Shen and Walter (Proposition 4.3 of
[14]): we can specify the resolution of the kernel and can give a tighter upper
bound on the approximation in Vm.

Before we present a sharper version of Proposition 3.6 that appeared in [12],
let us add the following assumption:

(A5) Assume that for each φj with cj 6= 0 we have φj ≥ 0.

Note that under (A5),

K(s, t) =
A∑

j=1

∑

k∈ZZ

(
cj∫

IR φj

)
φj(t− k)φj(s− k).

For the sake of notation, we define Km(s, t) by

Km(s, t) = 2mK(2ms, 2mt).

Proposition 5.6 Under assumptions (A1) - (A5) on the scaling vector,

(1)
∫
IR Km(s, t)ds = 1 ∀m ∈ ZZ, t ∈ IR

(2) Km(s, t) ≥ 0 ∀m ∈ ZZ, t ∈ IR
(3) For each γ > 0, if m > log2(

M
γ

) then sup|s−t|>γ Km(s, t) = 0.

Proof. The proofs of 1. and 2. are identical to those of Proposition 3.6 of [12]
and are thus omitted. To see 3., observe that |supp (φj(2m · −k)) | ≤ M2−m <
γ. So if |t− s| > γ then φj(2ms− k)φj(2mt− k) = 0 ∀k ∈ ZZ. Thus

sup
|s−t|>γ

Km(s, t) = 2m
A∑

j=1

∑

k∈ZZ

(
cj∫

IR φj

)
sup

|s−t|>γ
φj(2ms− k)φj(2mt− k) = 0. 2

Theorem 5.7 Let Φ = (φ1, . . . , φA)T be a scaling vector and assume (A1) -
(A5) hold. Suppose that M1 ≤ f(t) ≤ M2 on [a, b]. Then for each δ > 0 and

m > log2

(
M
δ

)
,

M1 ≤ fm(t) ≤ M2
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whenever t ∈ (a + δ, b− δ). Here, fm ∈ Vm where

fm(t) =
∫

IR

Km(s, t)f(s)ds.

Proof. For t ∈ (a + δ, b− δ) choose m > log2

(
M
δ

)
and write fm(t) as

fm(t) =
∫

IR

Km(s, t)f(s)ds =




a∫

−∞
+

b∫

a

+

∞∫

b


 Km(s, t)f(s)ds

≤ 2 sup
|s−t|>δ

Km(s, t)
∫

IR

|f(s)|ds + M2

∫

IR

Km(s, t)ds

= M2

using the Proposition 5.6 above. The proof that M1 ≤ fm(t) is similar. 2
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