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Abstract

We consider the problem of large-scale evaluation of multivariate simplicial splines.
These splines arise naturally as the multivariate analog of B-splines and are useful
in applications such as finite element methods and computer-aided geometric design
(CAGD). Simplicial splines have much in common with their univariate analog. They
are piecewise polynomial functions whose smoothness and support can be controlled
by knot placement. In addition, these splines obey a recurrence formula. Unlike the
univariate case, implementation of this formula poses some problems. If £ € IR® lies
on an (s — 1)-dimensional hyperplane H connecting two or more knot points, then the
recurrence formula cannot be utilized.

Results on the evaluation of multivariate simplicial splines are documented in [7, 10].
In both cases, the authors use perturbation techniques when faced with evaluating the
spline at z € H. In [7], the author suggests a stable means for evaluating simplicial
splines at points on the interior of regions formed by (s — 1)-dimensional hyperplanes
and we augment this method with a scheme for evaluating points on any such hyper-
plane. Our method is especially suited to large-scale evaluation of the spline and it
is numerically stable when the evaluation is performed near or on (s — 1)-dimensional
hyperplanes. Examples are given to demonstrate the algorithm.
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1 Introduction

We consider the problem of evaluation multivariate simplicial splines. These splines are the
natural multivariate extension of the B-spline of Curry and Schoenburg [5]. These splines
can be defined using a geometric interpretation or via a distributional rule that arises when
realizing the spline is the multiplier in an inner product that defines a linear functional.
Neither definition allows for easy evaluation. Micchelli [8] proved that a recurrence formula
exists for these splines and that a simplicial spline of total degree n can be expressed as a
linear combination of simplicial splines of degree n — 1. This formula can be repeated until
the spline is ultimately expressed in terms of constant functions.

This recurrence has been studied by Grandine [7] and Neamtu [10]. Both authors realized
that this formula has problems. The linear combinations at each level require knowledge of
the barycentric coordinates of the evaluation point. Moreover if the evaluation point lies on
an (s —1)-dimensional hyperplane connecting two or more knot points, the recursion formula
of deBoor is invalid.

Grandine [7] handled the problem of determining barycentric coordinates by using linear
programming methods. He was also able to avoid the hyperplane problem in the case where
the knot points of the spline were in general position. In this paper, we generalize the work
of Grandine (in the bivariate case) and provide a method for evaluating a simplicial spline
at a large number of points. The algorithm will work for any configuration of knot points.
Hyperplane problems are avoided by appealing to the regularity properties possessed by the
splines and utilizing a bivariate interpolation scheme due to Micchelli [9].

The outline of this paper is as follows: In Section 2, we give basic definitions, notation, and
elementary results necessary to the sequel. The derivation of multivariate simplicial splines is
given in the next section as well as the recursion formula of Micchelli [8]. Grandine’s method
is outlined in Section 4. The final section contains the generalization of this algorithm as
well as several examples illustrating our results.

2 Notation, Definitions, and Basic Results

In this section we introduce notation, definitions, and basic results used throughout the
remainder of the paper.

Let A be a nonempty set in IR°. Then we make the following definitions. x4(z) is the
characteristic function on A, [A] is its convex hull of A, and volg(A) is its k-dimensional
volume of A.

Other sets of interest are m,(IR?) — the set of all bivariate polynomials of degree less than or
equal to n and the Euclidean n-simplex S™ given by:



We define the residual tg =1 —¢; —ty — -+ — t,,.

Y

Figure 1: The simplices S* and S2.

In order to define univariate B-splines we will need the divided difference operator [to, ..., t,]g,
of order n acting on function g (see for example [1]), and the truncated power function
y+ = max{0, y}.

For multivariate splines, we will consider knot sets X = {z°, ... 2"} C IR®, n > s, and make
use of the set X = X\{z"}.

3 Simplicial Splines Defined

In this section, we restate Micchelli’s derivation of the definition of multivariate simplicial
splines as well as list several properties obeyed by these splines. Since univariate B-splines
are defined in terms of divided differences, the generalization to the higher dimensional
setting is difficult. Neamtu [10] has given a nice definition of multivariate divided differences,
but the definition does not allow all the properties of univariate B-splines to carry over
to the multivariate setting. deBoor’s observation that the univariate B-splines measure n
dimensional volume of a certain simplex provides the best bridge to higher dimensions.

Let to < .-+ <t,, with ty < t,. We define the univariate B-spline of order n by:
Non(z) = nlte, ..., t,](t — )77, (1)

where the divided difference operator acts on ¢. Some basic properties of B-splines have
been established (see deBoor [2]):

1. fgr Non(z)dz = 1.

2. Nyu(z) >0, for all .



3. supp(Non(x)) = [to, tn)-

4. Ny, is a piecewise polynomial of degree < n with possible breakpoints at the knots
toy - et

5. If ¢ is not a knot point, then Ny, is n — 2 times continuously differentiable. If ¢; is
repeated k times, then Ny, is n — k — 1 times continuously differentiable.

The B-spline N, also satisfies a recursion formula due to deBoor [1]:

Theorem 3.1 Let Ny, be given as in (1). Then

n—1 T — th, — T
N, N,
n Non(®) = t_%0nd)+%_%

Nl,n—1($), (2)

at all points x where the splines in (2) are defined and continuous.

Using the Hermite-Gennocchi formula for divided differences, we can show that Ny, obeys
the following distributional relationship:

where \g =1—XA; —---— )\, and g is any continuous function on IR with compact support.
The following derivation is due to Micchelli [8]:

Let Y = {3°,...,4™} be a set of vectors in IR" such that vol,[Y] = 1 and the first component
of each y* satisfies
ylf:tk, k=0,...,n

Set u = A\gy® + - - \py™, where A = (Aq,...,\,)T € S™. Note then that the Jacobian of this
transformation is 1 so that (3) becomes

| Noa(@g@ide = nt [ oxgy (..., ua)du
R
= /(n'/ X[y](x,uQ,...,un)dug---dun)g(x)dx.
R R 1

Thus we see that
Non(x) =nlvol, 1{y € [Y]:y =z} (4)

The following example illustrates this point:



Example 3.2 Let n = 2 with ty = 0, t; = %, and to = 1. We choose as our simplex
y° = (0,07, ¢ = (5,2)%, and y* = (1,0)T. Then Noy(x) is simply the length of line
segment L.

Figure 2. The linear B spline from example 3.2

Note that the identity (4) provides a natural way to define multivariate simplicial splines.

Let X = {2%...,2"} C R®, n > s with vol,[X] > 0 and assume Y = {¢° ... 9"} C R"
with vol;[Y] = 1. Then we define the multivarate simplicial spline M (z|X) as

M(z|X) =nlvol,_{y e [Y]:y;=z;,j=1,...,s}. (5)

The definition allows for all of the properties of univariate B-splines to hold in the higher
dimensional setting (see Micchelli [8]):

1. If n = s then .

M(z]|X) = W[X]Xint([x])(x)- (6)

2. Jgrs M(z|X)dzx = 1.

3. M(z|X)>0.

4. supp(M) = [X].

5. M(:|X) is a piecewise polynomial of total degree < n — s.

6. Let k£ > s be the maximal number of knots that lie in the same (s — 1)-dimensional
hyperplane. Then
M(-|X) € " HIRY). (7)



The multivariate simplicial spline also satisfies a distributional relation:
/ F(2)M (2] X)dz = n! / FQoz® + -+ + Agz™)dA
8 Sn

for all f € C(IR?) with compact support.
Micchelli [8] showed that multivariate simplicial splines also obey a recursion formula:
Theorem 3.3 Suppose x = Y p_o \Mez®, Si_o M =1, and A\, >0, k=0,...,n. Then

3 N M (z]Xy)

TL—SkZO

n

M(z|X) =

at all points x where the splines on the right hand side of (3.3) are continuous.

)

We conclude this section with an example illustrating the properties of multivariate simplicial

splines.

Example 3.4 Let n =3 and X = {(0,0)7, (0,0)7, (1,0)7, (0,1)"}. The degree of the spline

s 1 and k = 3 from 7 above. So M 1is bounded only.

(0.1

(0,0) (Twice) (1,0)

Figure 3. The domain of the spline from Example 3.4

Example 3.5 Let n =5 and X = {(0,0)7, (0,0)7, (1,0)T,(1,0)T, (0,1)7, (0,1)T}. The de-

gree of the spline is 3 and k = 4 from 7 above. So M is continuous.



(0.1} (rwice)

(0.0} (rdee) (1,0) (rvlce)

Figure 4. The domain of the spline from Erample 3.5

Example 3.6 Let n = 3 and X = {(1,1)",(1,-1)", (=1,-1)",(=1,1)T}. The degree of
the spline is 1 and k = 2 from 7 above. So M is continuous.
(-1.1) (L.13

i-1,-1% i1.-1)

Figure 5. The domain of the spline from Erample 3.6

Example 3.7 Let n =3 and X = {(1,1)T, (1,-1)T, (=1, -1)T, (=1,1)T,(0,0)T}. Then the
degree of the spline is 2 and k = 3 from 7 above. So M is conlinuous.



(-1} (1,1}

(0.0

{-1,-1} (1,-1}

Figure 6. The domain of the spline from Erample 3.7

4 Grandine’s Method for Numerically Evaluating Sim-
plicial Splines

In order to understand how Grandine’s method works, recall the requirements for z in
Theorem 3.3:

Z/\kl‘k =z

k=0
e =1 (10)
k=0

Aoy---3An > 0.

In order to implement the recursion formula (9), we must have the ability to compute the \;’s
for a given z. The system (10) can be viewed as the feasible region of a linear programming
problem and finding the \;’s is equivalent to pivoting to a point in the feasible region. If
we cannot pivot into the feasible region, it follows immediately that x ¢ [X] and thus by
Property 3 in the previous section M (z|X) = 0.

As far as producing a solution to (10), the two-phase method outlined in [6] works well. We
illustrate with the following example.

Example 4.1 Let X be the knot set given in Example 3.6 and suppose we wish to evaluate
the resulting spline at the point (%, 0)T.

The recursion formula (9) becomes:



Using Property 1 of the multivariate splines we see that

1 x € int([Xk])
0 otherwise.

M(z|X) = {

for each k = 0,1, 2,3. Upon inspection of Figure 4, we see that M (x|Xy) = M(z|X;) =0 so
that (11) reduces to

Thus, we need only determine A\ and A3 in order to evaluate the spline. We consider the
following linear programming problem:

Minimize C' = a1 + a2 + a3
such that
)\0+/\1—)\2—)\3+a1 =

A=A — A+ A3+ a
)\0+/\1+)\2+)\3+CL3

Ao, - -5 A3, Q1, A2, A3

I
S = Ol

v

(12)

Here, a1, as, a3 are artificial variables introduced so that the minimum value of C' is 0. In
the process of forcing the a;’s to zero, the two-phase method returns A\g = %, Al = A = i,

and A3 = 0. Thus we have 5
M(z|X)=-.
(@1X) = 5

There are two advantages to Grandine’s scheme. First, the two-phase method is stable.
The second advantage is that the two-phase method works for any spatial dimension. The
disadvantages to this scheme are that it is extremely costly to perform large scale evaluation
of the spline when the simplex method has to be called many times. A greater disadvantage
is that the scheme fails if the evaluation point z lies on an (s — 1)-dimensional hyperplane
connecting s or more knot points. We illustrate this disadvantage with the following example:

Example 4.2 Suppose we wish to evaluate the spline M (-|X) from Ezample 3.6 at the point
z = (0,0)T. Clearly we can choose \g = Ay = 3 and A\; = A3 = 0 so that

M (2] X) = 3{3 M (2] Xo) + £ M(x]Xs)}.

We cannot use Property 1 in the previous section to evaluate the constant splines. In the
univariate case, we avoid this problem by a prior: deciding that the constant function will
be left continuous or right continuous. This is not so in higher dimensions. Grandine [7]
does suggest a method for solving this problem, but he requires that the original knot points
be in general position. A set X = {z°,..., 2"} C R’ is said to be in general position if the



maximum number of knot points that lie on any (s—1)-dimensional hyperplane is s. General
position eliminates repeated knots or interior knots that might lie on a hyperplane connecting
s exterior knots. For completeness, we include a pseudocode of Grandine’s algorithm. To
this end, we introduce new notation. Let N = {0,...,n + 1} and for ky,...,k; € IN, the
symbol Xj, i denotes the set X\{z*, ...,z }. Here we assume 0 < j < n, and ky, ..., k;
are distinct integers.

Algorithm 4.3 Given X = {2°,...,2"} C R’, n > s, vol,[X] > 0, and z € R’, with =
not contained in any (s — 1)-dimensional hyperplane connecting s or more knot points, this
algorithm produces the value M(z|X). Use the two-phase method to determine all sets of
barycentric coordinates.

Compute barycentric coordinates Ag,, ko € IN, for z relative to X

To=0

For ko do
Compute the barycentric coordinates Ay k,, k1 € IR\{ko}, for = relative to Xy,
=0
For k; do

Compute the barycentric coodinates Mg,k k,» k2 € IN\{ko,k1}, for z relative to Xy,

T =0

For k,_s;_o do

Compute barycentric coordinates Mgy i, . ;s kn—s—1 € IN\{ko,...,kn—s—2},

for r relative to Xy, . k., ,_»
Ths-1=0
For k,_s_1 do
Use 6 to evaluate M(z|Xk, k. . 1)
Ths—1=Th—s-1+ %M(‘T|Xk0,---,kn—s—1)
Ths2=Th s2+ #Tn—s—l

Ty =T + 52T,
To =Ty + n;sTl

M(z|X) =Ty

5 A Bivariate Generalization of Grandine’s Method

In this section we present a bivariate generalization of Grandine’s method. While this scheme
only requires that voly([X]) > 0, it is unsuitable for evaluating the spline at a few points.
Indeed, our procedure is intended for large scale evaluation of the simplicial spline.

The idea is to exploit Property 4 from Section 3. That is, for X = {z°,...,2"} C IR?



M (-]X) is a piecewise polynomial of total degree < n — 2. Moreover, the domains of the
polynomial pieces are the regions formed by the line segments connecting knot points.

Since a bivariate polynomial of degree n — 2 consists of at most ( g ) terms, we begin our

algorithm by using Algorithm 4.3 to evaluate intertor points of each region. Since we

n
2
stay away from boundary points, Algorithm 4.3 works well. We then appeal to a bivariate
interpolation theorem of Micchelli [9] to define the piecewise polynomial on each region. All
that is left is to determine which region houses a given x and then evaluate the corresponding
polynomial. If x resides on the boundary of a region, we apply the regularity Property 5
from Section 3 to determine how M (z|X) should be evaluated.

Along with Grandine’s method and Micchelli’s interpolation theorem, we need some addi-
tional computational tools. First we need to know an upper bound on the number of regions
that can be formed from n+ 1 points in the plane. Next, we need a way to characterize each
of these regions and then use this information to determine which region holds z.

The following proposition gives some insight to the number of regions formed by n-+1 points.

Proposition 5.1 Let X = {2°,...,2"} C R? Denote by R(n) the number of regions
formed by connecting all points in X. Then R(0) = R(1) =0, R(2) =1, and for n > 2,

R(n)gR(n—2)+<g>+n. (13)

Moreover if the points of X are in general position, equality holds in (13).

Proof. If the points of X are in general position, then the proof of the equality of (13) can be
found in [4]. Otherwise at least one point lies on a line segment connecting two other points.
Let the number of these points be denoted by k. Then it easy to see that R(n) = R(n — k).
It is easy to show by induction that R is a nondecreasing function so that the inequality in
(13) holds. O

Now that we know the total number of regions formed by the points in X, we need a
method for characterizing points in these regions. Each line segment can be expressed as
az + by + ¢ = 0 so that a point x = (21, 73) € IR” must either satisfy

ar1+bres +¢c>0 (14)

or
axy1 + bre + ¢ < 0. (15)

There are ( ;L

define the elements A%, by:

) such lines. We form an ( ;L > X ( ;L ) matrix A for each region i and

A 1 if (14) holds for the line connecting z", °,
™| —1 if (14) holds for the line connecting z", z°.



Note that each A’ is symmetrical and we need only compute A, for r < s.

Now we have an interpolation problem to solve on each region. The polynomial interpolant
will be exact if we use a polynomial of degree n — 2. Our original attempt to construct this
interpolant was to form the Vandermonde matrix and solve the system. But for randomly
chosen points in a region, this procedure is highly unstable. We avoided this problem by
showing that the conditions of the following theorem can be satisfied.

Theorem 5.2 [Micchelli]. Let lo, ..., 4, be lines such that each pair of lines intersect

at a point and every point lies on exactly two lines. If 2/, j = 1,...,N, N = Tg ),
are the intersection points, then given real numbers y;, j = 1,..., N, there exists a unique

polynomial p € Tym_1(IR?) such that p(z?) = y;.

Proof. Let %/ be the intersection point of £;, ¢;. It is easily verified that for z € IR?, the
polynomial
N
[Ty te(@)
p(l") = Z yk%
k=1 Hr;ﬁi,j k(x’ )

satisfies the conclusion of the theorem. O

Corollary 5.3 Given a convex polygon P, the lines ¥y, . .., ¢, can be constructed so that 27,

j=1,..., ( ZL ) lie on the interior of P.

Not only does Theorem 5.2 tell us how to build our interpolants but it also provides the
evaluation points for each region.

Thus, our bivariate generalization of Grandine’s scheme is summarized in the following al-
gorithm:

Algorithm 5.4 Given X = {2°...,2"} C R*, n > s, vol,[X] > 0, and z € IR?, this
algorithm returns the value of M (x|X). Let N denote the number of regions formed by the
points in X.

For k from 1 to N do
Find the interpolation points z%J
Use Algorithm 4.3 to evaluate M (z"/|X)
Determine the polynomial piece for region k
Determine the region that houses z and evaluate the corresponding polynomial.

We conclude the paper by using Algorithm 5.4 to evaluate the splines given in Examples
3.4-3.7 in Section 3.



Example 5.5 Let n =3 and X = {(0,0)%,(0,0)7, (1,0)T, (0,1)T}.

Figure 7. The domain of the spline from Erample 5.5

Example 5.6 Let n =5 and X = {(0,0)7,(0,0)7, (1,0)", (1,0)", (0, )", (0,1)"}.

Figure 8. The domain of the spline from Erample 5.6



Example 5.7 Let n =3 and X = {(1,1)T, (1,-1)T, (-1,-1)T, (-1,1)T}.
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Figure 9. The domain of the spline from Example 5.7

Example 5.8 Let n =3 and X = {(1,1)7, (1,-1)7, (-1,-1)7, (-=1,1)7, (0,0)"}.

Figure 10. The domain of the spline from Ezample 5.8
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